peridot/vendor/github.com/ProtonMail/gopenpgp/v2/crypto/message.go

466 lines
14 KiB
Go
Raw Normal View History

2022-07-07 20:11:50 +00:00
package crypto
import (
"bytes"
"encoding/base64"
goerrors "errors"
"io"
"io/ioutil"
"regexp"
"strings"
"time"
"github.com/ProtonMail/go-crypto/openpgp/clearsign"
"github.com/ProtonMail/go-crypto/openpgp/packet"
"github.com/ProtonMail/gopenpgp/v2/armor"
"github.com/ProtonMail/gopenpgp/v2/constants"
"github.com/ProtonMail/gopenpgp/v2/internal"
"github.com/pkg/errors"
)
// ---- MODELS -----
// PlainMessage stores a plain text / unencrypted message.
type PlainMessage struct {
// The content of the message
Data []byte
// If the content is text or binary
TextType bool
// The file's latest modification time
Time uint32
// The encrypted message's filename
Filename string
}
// PGPMessage stores a PGP-encrypted message.
type PGPMessage struct {
// The content of the message
Data []byte
}
// PGPSignature stores a PGP-encoded detached signature.
type PGPSignature struct {
// The content of the signature
Data []byte
}
// PGPSplitMessage contains a separate session key packet and symmetrically
// encrypted data packet.
type PGPSplitMessage struct {
DataPacket []byte
KeyPacket []byte
}
// A ClearTextMessage is a signed but not encrypted PGP message,
// i.e. the ones beginning with -----BEGIN PGP SIGNED MESSAGE-----.
type ClearTextMessage struct {
Data []byte
Signature []byte
}
// ---- GENERATORS -----
// NewPlainMessage generates a new binary PlainMessage ready for encryption,
// signature, or verification from the unencrypted binary data.
// This will encrypt the message with the binary flag and preserve the file as is.
func NewPlainMessage(data []byte) *PlainMessage {
return &PlainMessage{
Data: clone(data),
TextType: false,
Filename: "",
Time: uint32(GetUnixTime()),
}
}
// NewPlainMessageFromFile generates a new binary PlainMessage ready for encryption,
// signature, or verification from the unencrypted binary data.
// This will encrypt the message with the binary flag and preserve the file as is.
// It assigns a filename and a modification time.
func NewPlainMessageFromFile(data []byte, filename string, time uint32) *PlainMessage {
return &PlainMessage{
Data: clone(data),
TextType: false,
Filename: filename,
Time: time,
}
}
// NewPlainMessageFromString generates a new text PlainMessage,
// ready for encryption, signature, or verification from an unencrypted string.
// This will encrypt the message with the text flag, canonicalize the line endings
// (i.e. set all of them to \r\n) and strip the trailing spaces for each line.
// This allows seamless conversion to clear text signed messages (see RFC 4880 5.2.1 and 7.1).
func NewPlainMessageFromString(text string) *PlainMessage {
return &PlainMessage{
Data: []byte(internal.CanonicalizeAndTrim(text)),
TextType: true,
Filename: "",
Time: uint32(GetUnixTime()),
}
}
// NewPGPMessage generates a new PGPMessage from the unarmored binary data.
func NewPGPMessage(data []byte) *PGPMessage {
return &PGPMessage{
Data: clone(data),
}
}
// NewPGPMessageFromArmored generates a new PGPMessage from an armored string ready for decryption.
func NewPGPMessageFromArmored(armored string) (*PGPMessage, error) {
encryptedIO, err := internal.Unarmor(armored)
if err != nil {
return nil, errors.Wrap(err, "gopenpgp: error in unarmoring message")
}
message, err := ioutil.ReadAll(encryptedIO.Body)
if err != nil {
return nil, errors.Wrap(err, "gopenpgp: error in reading armored message")
}
return &PGPMessage{
Data: message,
}, nil
}
// NewPGPSplitMessage generates a new PGPSplitMessage from the binary unarmored keypacket,
// datapacket, and encryption algorithm.
func NewPGPSplitMessage(keyPacket []byte, dataPacket []byte) *PGPSplitMessage {
return &PGPSplitMessage{
KeyPacket: clone(keyPacket),
DataPacket: clone(dataPacket),
}
}
// NewPGPSplitMessageFromArmored generates a new PGPSplitMessage by splitting an armored message into its
// session key packet and symmetrically encrypted data packet.
func NewPGPSplitMessageFromArmored(encrypted string) (*PGPSplitMessage, error) {
message, err := NewPGPMessageFromArmored(encrypted)
if err != nil {
return nil, err
}
return message.SplitMessage()
}
// NewPGPSignature generates a new PGPSignature from the unarmored binary data.
func NewPGPSignature(data []byte) *PGPSignature {
return &PGPSignature{
Data: clone(data),
}
}
// NewPGPSignatureFromArmored generates a new PGPSignature from the armored
// string ready for verification.
func NewPGPSignatureFromArmored(armored string) (*PGPSignature, error) {
encryptedIO, err := internal.Unarmor(armored)
if err != nil {
return nil, errors.Wrap(err, "gopenpgp: error in unarmoring signature")
}
signature, err := ioutil.ReadAll(encryptedIO.Body)
if err != nil {
return nil, errors.Wrap(err, "gopenpgp: error in reading armored signature")
}
return &PGPSignature{
Data: signature,
}, nil
}
// NewClearTextMessage generates a new ClearTextMessage from data and
// signature.
func NewClearTextMessage(data []byte, signature []byte) *ClearTextMessage {
return &ClearTextMessage{
Data: clone(data),
Signature: clone(signature),
}
}
// NewClearTextMessageFromArmored returns the message body and unarmored
// signature from a clearsigned message.
func NewClearTextMessageFromArmored(signedMessage string) (*ClearTextMessage, error) {
modulusBlock, rest := clearsign.Decode([]byte(signedMessage))
if len(rest) != 0 {
return nil, errors.New("gopenpgp: extra data after modulus")
}
signature, err := ioutil.ReadAll(modulusBlock.ArmoredSignature.Body)
if err != nil {
return nil, errors.Wrap(err, "gopenpgp: error in reading cleartext message")
}
return NewClearTextMessage(modulusBlock.Bytes, signature), nil
}
// ---- MODEL METHODS -----
// GetBinary returns the binary content of the message as a []byte.
func (msg *PlainMessage) GetBinary() []byte {
return msg.Data
}
// GetString returns the content of the message as a string.
func (msg *PlainMessage) GetString() string {
return strings.ReplaceAll(string(msg.Data), "\r\n", "\n")
}
// GetBase64 returns the base-64 encoded binary content of the message as a
// string.
func (msg *PlainMessage) GetBase64() string {
return base64.StdEncoding.EncodeToString(msg.Data)
}
// NewReader returns a New io.Reader for the binary data of the message.
func (msg *PlainMessage) NewReader() io.Reader {
return bytes.NewReader(msg.GetBinary())
}
// IsText returns whether the message is a text message.
func (msg *PlainMessage) IsText() bool {
return msg.TextType
}
// IsBinary returns whether the message is a binary message.
func (msg *PlainMessage) IsBinary() bool {
return !msg.TextType
}
// getFormattedTime returns the message (latest modification) Time as time.Time.
func (msg *PlainMessage) getFormattedTime() time.Time {
return time.Unix(int64(msg.Time), 0)
}
// GetBinary returns the unarmored binary content of the message as a []byte.
func (msg *PGPMessage) GetBinary() []byte {
return msg.Data
}
// NewReader returns a New io.Reader for the unarmored binary data of the
// message.
func (msg *PGPMessage) NewReader() io.Reader {
return bytes.NewReader(msg.GetBinary())
}
// GetArmored returns the armored message as a string.
func (msg *PGPMessage) GetArmored() (string, error) {
return armor.ArmorWithType(msg.Data, constants.PGPMessageHeader)
}
// GetArmoredWithCustomHeaders returns the armored message as a string, with
// the given headers. Empty parameters are omitted from the headers.
func (msg *PGPMessage) GetArmoredWithCustomHeaders(comment, version string) (string, error) {
return armor.ArmorWithTypeAndCustomHeaders(msg.Data, constants.PGPMessageHeader, version, comment)
}
// GetEncryptionKeyIDs Returns the key IDs of the keys to which the session key is encrypted.
func (msg *PGPMessage) GetEncryptionKeyIDs() ([]uint64, bool) {
packets := packet.NewReader(bytes.NewReader(msg.Data))
var err error
var ids []uint64
var encryptedKey *packet.EncryptedKey
Loop:
for {
var p packet.Packet
if p, err = packets.Next(); goerrors.Is(err, io.EOF) {
break
}
switch p := p.(type) {
case *packet.EncryptedKey:
encryptedKey = p
ids = append(ids, encryptedKey.KeyId)
case *packet.SymmetricallyEncrypted,
*packet.AEADEncrypted,
*packet.Compressed,
*packet.LiteralData:
break Loop
}
}
if len(ids) > 0 {
return ids, true
}
return ids, false
}
// GetHexEncryptionKeyIDs Returns the key IDs of the keys to which the session key is encrypted.
func (msg *PGPMessage) GetHexEncryptionKeyIDs() ([]string, bool) {
return getHexKeyIDs(msg.GetEncryptionKeyIDs())
}
// GetSignatureKeyIDs Returns the key IDs of the keys to which the (readable) signature packets are encrypted to.
func (msg *PGPMessage) GetSignatureKeyIDs() ([]uint64, bool) {
return getSignatureKeyIDs(msg.Data)
}
// GetHexSignatureKeyIDs Returns the key IDs of the keys to which the session key is encrypted.
func (msg *PGPMessage) GetHexSignatureKeyIDs() ([]string, bool) {
return getHexKeyIDs(msg.GetSignatureKeyIDs())
}
// GetBinaryDataPacket returns the unarmored binary datapacket as a []byte.
func (msg *PGPSplitMessage) GetBinaryDataPacket() []byte {
return msg.DataPacket
}
// GetBinaryKeyPacket returns the unarmored binary keypacket as a []byte.
func (msg *PGPSplitMessage) GetBinaryKeyPacket() []byte {
return msg.KeyPacket
}
// GetBinary returns the unarmored binary joined packets as a []byte.
func (msg *PGPSplitMessage) GetBinary() []byte {
return append(msg.KeyPacket, msg.DataPacket...)
}
// GetArmored returns the armored message as a string, with joined data and key
// packets.
func (msg *PGPSplitMessage) GetArmored() (string, error) {
return armor.ArmorWithType(msg.GetBinary(), constants.PGPMessageHeader)
}
// GetPGPMessage joins asymmetric session key packet with the symmetric data
// packet to obtain a PGP message.
func (msg *PGPSplitMessage) GetPGPMessage() *PGPMessage {
return NewPGPMessage(append(msg.KeyPacket, msg.DataPacket...))
}
// SplitMessage splits the message into key and data packet(s).
// Parameters are for backwards compatibility and are unused.
func (msg *PGPMessage) SplitMessage() (*PGPSplitMessage, error) {
bytesReader := bytes.NewReader(msg.Data)
packets := packet.NewReader(bytesReader)
splitPoint := int64(0)
Loop:
for {
p, err := packets.Next()
if goerrors.Is(err, io.EOF) {
break
}
if err != nil {
return nil, err
}
switch p.(type) {
case *packet.SymmetricKeyEncrypted, *packet.EncryptedKey:
splitPoint = bytesReader.Size() - int64(bytesReader.Len())
case *packet.SymmetricallyEncrypted, *packet.AEADEncrypted:
break Loop
}
}
return &PGPSplitMessage{
KeyPacket: clone(msg.Data[:splitPoint]),
DataPacket: clone(msg.Data[splitPoint:]),
}, nil
}
// SeparateKeyAndData splits the message into key and data packet(s).
// Parameters are for backwards compatibility and are unused.
// Deprecated: use SplitMessage().
func (msg *PGPMessage) SeparateKeyAndData(_ int, _ int) (*PGPSplitMessage, error) {
return msg.SplitMessage()
}
// GetBinary returns the unarmored binary content of the signature as a []byte.
func (sig *PGPSignature) GetBinary() []byte {
return sig.Data
}
// GetArmored returns the armored signature as a string.
func (sig *PGPSignature) GetArmored() (string, error) {
return armor.ArmorWithType(sig.Data, constants.PGPSignatureHeader)
}
// GetSignatureKeyIDs Returns the key IDs of the keys to which the (readable) signature packets are encrypted to.
func (sig *PGPSignature) GetSignatureKeyIDs() ([]uint64, bool) {
return getSignatureKeyIDs(sig.Data)
}
// GetHexSignatureKeyIDs Returns the key IDs of the keys to which the session key is encrypted.
func (sig *PGPSignature) GetHexSignatureKeyIDs() ([]string, bool) {
return getHexKeyIDs(sig.GetSignatureKeyIDs())
}
// GetBinary returns the unarmored signed data as a []byte.
func (msg *ClearTextMessage) GetBinary() []byte {
return msg.Data
}
// GetString returns the unarmored signed data as a string.
func (msg *ClearTextMessage) GetString() string {
return string(msg.Data)
}
// GetBinarySignature returns the unarmored binary signature as a []byte.
func (msg *ClearTextMessage) GetBinarySignature() []byte {
return msg.Signature
}
// GetArmored armors plaintext and signature with the PGP SIGNED MESSAGE
// armoring.
func (msg *ClearTextMessage) GetArmored() (string, error) {
armSignature, err := armor.ArmorWithType(msg.GetBinarySignature(), constants.PGPSignatureHeader)
if err != nil {
return "", errors.Wrap(err, "gopenpgp: error in armoring cleartext message")
}
str := "-----BEGIN PGP SIGNED MESSAGE-----\r\nHash: SHA512\r\n\r\n"
str += msg.GetString()
str += "\r\n"
str += armSignature
return str, nil
}
// ---- UTILS -----
// IsPGPMessage checks if data if has armored PGP message format.
func IsPGPMessage(data string) bool {
re := regexp.MustCompile("^-----BEGIN " + constants.PGPMessageHeader + "-----(?s:.+)-----END " +
constants.PGPMessageHeader + "-----")
return re.MatchString(data)
}
func getSignatureKeyIDs(data []byte) ([]uint64, bool) {
packets := packet.NewReader(bytes.NewReader(data))
var err error
var ids []uint64
var onePassSignaturePacket *packet.OnePassSignature
var signaturePacket *packet.Signature
Loop:
for {
var p packet.Packet
if p, err = packets.Next(); goerrors.Is(err, io.EOF) {
break
}
switch p := p.(type) {
case *packet.OnePassSignature:
onePassSignaturePacket = p
ids = append(ids, onePassSignaturePacket.KeyId)
case *packet.Signature:
signaturePacket = p
if signaturePacket.IssuerKeyId != nil {
ids = append(ids, *signaturePacket.IssuerKeyId)
}
case *packet.SymmetricallyEncrypted,
*packet.AEADEncrypted,
*packet.Compressed,
*packet.LiteralData:
break Loop
}
}
if len(ids) > 0 {
return ids, true
}
return ids, false
}
func getHexKeyIDs(keyIDs []uint64, ok bool) ([]string, bool) {
hexIDs := make([]string, len(keyIDs))
for i, id := range keyIDs {
hexIDs[i] = keyIDToHex(id)
}
return hexIDs, ok
}