//go:build linux
// Copyright (C) 2024 SUSE LLC. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package securejoin
import (
"errors"
"fmt"
"os"
"path/filepath"
"runtime"
"strconv"
"sync"
"golang.org/x/sys/unix"
)
func fstat(f *os.File) (unix.Stat_t, error) {
var stat unix.Stat_t
if err := unix.Fstat(int(f.Fd()), &stat); err != nil {
return stat, &os.PathError{Op: "fstat", Path: f.Name(), Err: err}
}
return stat, nil
}
func fstatfs(f *os.File) (unix.Statfs_t, error) {
var statfs unix.Statfs_t
if err := unix.Fstatfs(int(f.Fd()), &statfs); err != nil {
return statfs, &os.PathError{Op: "fstatfs", Path: f.Name(), Err: err}
}
return statfs, nil
}
// The kernel guarantees that the root inode of a procfs mount has an
// f_type of PROC_SUPER_MAGIC and st_ino of PROC_ROOT_INO.
const (
procSuperMagic = 0x9fa0 // PROC_SUPER_MAGIC
procRootIno = 1 // PROC_ROOT_INO
)
func verifyProcRoot(procRoot *os.File) error {
if statfs, err := fstatfs(procRoot); err != nil {
return err
} else if statfs.Type != procSuperMagic {
return fmt.Errorf("%w: incorrect procfs root filesystem type 0x%x", errUnsafeProcfs, statfs.Type)
}
if stat, err := fstat(procRoot); err != nil {
return err
} else if stat.Ino != procRootIno {
return fmt.Errorf("%w: incorrect procfs root inode number %d", errUnsafeProcfs, stat.Ino)
}
return nil
}
var (
hasNewMountApiBool bool
hasNewMountApiOnce sync.Once
)
func hasNewMountApi() bool {
hasNewMountApiOnce.Do(func() {
// All of the pieces of the new mount API we use (fsopen, fsconfig,
// fsmount, open_tree) were added together in Linux 5.1[1,2], so we can
// just check for one of the syscalls and the others should also be
// available.
//
// Just try to use open_tree(2) to open a file without OPEN_TREE_CLONE.
// This is equivalent to openat(2), but tells us if open_tree is
// available (and thus all of the other basic new mount API syscalls).
// open_tree(2) is most light-weight syscall to test here.
//
// [1]: merge commit 400913252d09
// [2]:
fd, err := unix.OpenTree(-int(unix.EBADF), "/", unix.OPEN_TREE_CLOEXEC)
if err == nil {
hasNewMountApiBool = true
_ = unix.Close(fd)
}
})
return hasNewMountApiBool
}
func fsopen(fsName string, flags int) (*os.File, error) {
// Make sure we always set O_CLOEXEC.
flags |= unix.FSOPEN_CLOEXEC
fd, err := unix.Fsopen(fsName, flags)
if err != nil {
return nil, os.NewSyscallError("fsopen "+fsName, err)
}
return os.NewFile(uintptr(fd), "fscontext:"+fsName), nil
}
func fsmount(ctx *os.File, flags, mountAttrs int) (*os.File, error) {
// Make sure we always set O_CLOEXEC.
flags |= unix.FSMOUNT_CLOEXEC
fd, err := unix.Fsmount(int(ctx.Fd()), flags, mountAttrs)
if err != nil {
return nil, os.NewSyscallError("fsmount "+ctx.Name(), err)
}
return os.NewFile(uintptr(fd), "fsmount:"+ctx.Name()), nil
}
func newPrivateProcMount() (*os.File, error) {
procfsCtx, err := fsopen("proc", unix.FSOPEN_CLOEXEC)
if err != nil {
return nil, err
}
defer procfsCtx.Close()
// Try to configure hidepid=ptraceable,subset=pid if possible, but ignore errors.
_ = unix.FsconfigSetString(int(procfsCtx.Fd()), "hidepid", "ptraceable")
_ = unix.FsconfigSetString(int(procfsCtx.Fd()), "subset", "pid")
// Get an actual handle.
if err := unix.FsconfigCreate(int(procfsCtx.Fd())); err != nil {
return nil, os.NewSyscallError("fsconfig create procfs", err)
}
return fsmount(procfsCtx, unix.FSMOUNT_CLOEXEC, unix.MS_RDONLY|unix.MS_NODEV|unix.MS_NOEXEC|unix.MS_NOSUID)
}
func openTree(dir *os.File, path string, flags uint) (*os.File, error) {
dirFd := -int(unix.EBADF)
dirName := "."
if dir != nil {
dirFd = int(dir.Fd())
dirName = dir.Name()
}
// Make sure we always set O_CLOEXEC.
flags |= unix.OPEN_TREE_CLOEXEC
fd, err := unix.OpenTree(dirFd, path, flags)
if err != nil {
return nil, &os.PathError{Op: "open_tree", Path: path, Err: err}
}
return os.NewFile(uintptr(fd), dirName+"/"+path), nil
}
func clonePrivateProcMount() (_ *os.File, Err error) {
// Try to make a clone without using AT_RECURSIVE if we can. If this works,
// we can be sure there are no over-mounts and so if the root is valid then
// we're golden. Otherwise, we have to deal with over-mounts.
procfsHandle, err := openTree(nil, "/proc", unix.OPEN_TREE_CLONE)
if err != nil || testingForcePrivateProcRootOpenTreeAtRecursive(procfsHandle) {
procfsHandle, err = openTree(nil, "/proc", unix.OPEN_TREE_CLONE|unix.AT_RECURSIVE)
}
if err != nil {
return nil, fmt.Errorf("creating a detached procfs clone: %w", err)
}
defer func() {
if Err != nil {
_ = procfsHandle.Close()
}
}()
if err := verifyProcRoot(procfsHandle); err != nil {
return nil, err
}
return procfsHandle, nil
}
func privateProcRoot() (*os.File, error) {
if !hasNewMountApi() {
return nil, fmt.Errorf("new mount api: %w", unix.ENOTSUP)
}
// Try to create a new procfs mount from scratch if we can. This ensures we
// can get a procfs mount even if /proc is fake (for whatever reason).
procRoot, err := newPrivateProcMount()
if err != nil || testingForcePrivateProcRootOpenTree(procRoot) {
// Try to clone /proc then...
procRoot, err = clonePrivateProcMount()
}
return procRoot, err
}
var (
procRootHandle *os.File
procRootError error
procRootOnce sync.Once
errUnsafeProcfs = errors.New("unsafe procfs detected")
)
func unsafeHostProcRoot() (_ *os.File, Err error) {
procRoot, err := os.OpenFile("/proc", unix.O_PATH|unix.O_NOFOLLOW|unix.O_DIRECTORY|unix.O_CLOEXEC, 0)
if err != nil {
return nil, err
}
defer func() {
if Err != nil {
_ = procRoot.Close()
}
}()
if err := verifyProcRoot(procRoot); err != nil {
return nil, err
}
return procRoot, nil
}
func doGetProcRoot() (*os.File, error) {
procRoot, err := privateProcRoot()
if err != nil || testingForceGetProcRootUnsafe(procRoot) {
// Fall back to using a /proc handle if making a private mount failed.
// If we have openat2, at least we can avoid some kinds of over-mount
// attacks, but without openat2 there's not much we can do.
procRoot, err = unsafeHostProcRoot()
}
return procRoot, err
}
func getProcRoot() (*os.File, error) {
procRootOnce.Do(func() {
procRootHandle, procRootError = doGetProcRoot()
})
return procRootHandle, procRootError
}
var (
haveProcThreadSelf bool
haveProcThreadSelfOnce sync.Once
)
type procThreadSelfCloser func()
// procThreadSelf returns a handle to /proc/thread-self/ (or an
// equivalent handle on older kernels where /proc/thread-self doesn't exist).
// Once finished with the handle, you must call the returned closer function
// (runtime.UnlockOSThread). You must not pass the returned *os.File to other
// Go threads or use the handle after calling the closer.
//
// This is similar to ProcThreadSelf from runc, but with extra hardening
// applied and using *os.File.
func procThreadSelf(procRoot *os.File, subpath string) (_ *os.File, _ procThreadSelfCloser, Err error) {
haveProcThreadSelfOnce.Do(func() {
// If the kernel doesn't support thread-self, it doesn't matter which
// /proc handle we use.
_, err := fstatatFile(procRoot, "thread-self", unix.AT_SYMLINK_NOFOLLOW)
haveProcThreadSelf = (err == nil)
})
// We need to lock our thread until the caller is done with the handle
// because between getting the handle and using it we could get interrupted
// by the Go runtime and hit the case where the underlying thread is
// swapped out and the original thread is killed, resulting in
// pull-your-hair-out-hard-to-debug issues in the caller.
runtime.LockOSThread()
defer func() {
if Err != nil {
runtime.UnlockOSThread()
}
}()
// Figure out what prefix we want to use.
threadSelf := "thread-self/"
if !haveProcThreadSelf || testingForceProcSelfTask() {
/// Pre-3.17 kernels don't have /proc/thread-self, so do it manually.
threadSelf = "self/task/" + strconv.Itoa(unix.Gettid()) + "/"
if _, err := fstatatFile(procRoot, threadSelf, unix.AT_SYMLINK_NOFOLLOW); err != nil || testingForceProcSelf() {
// In this case, we running in a pid namespace that doesn't match
// the /proc mount we have. This can happen inside runc.
//
// Unfortunately, there is no nice way to get the correct TID to
// use here because of the age of the kernel, so we have to just
// use /proc/self and hope that it works.
threadSelf = "self/"
}
}
// Grab the handle.
var (
handle *os.File
err error
)
if hasOpenat2() {
// We prefer being able to use RESOLVE_NO_XDEV if we can, to be
// absolutely sure we are operating on a clean /proc handle that
// doesn't have any cheeky overmounts that could trick us (including
// symlink mounts on top of /proc/thread-self). RESOLVE_BENEATH isn't
// stricly needed, but just use it since we have it.
//
// NOTE: /proc/self is technically a magic-link (the contents of the
// symlink are generated dynamically), but it doesn't use
// nd_jump_link() so RESOLVE_NO_MAGICLINKS allows it.
//
// NOTE: We MUST NOT use RESOLVE_IN_ROOT here, as openat2File uses
// procSelfFdReadlink to clean up the returned f.Name() if we use
// RESOLVE_IN_ROOT (which would lead to an infinite recursion).
handle, err = openat2File(procRoot, threadSelf+subpath, &unix.OpenHow{
Flags: unix.O_PATH | unix.O_CLOEXEC,
Resolve: unix.RESOLVE_BENEATH | unix.RESOLVE_NO_XDEV | unix.RESOLVE_NO_MAGICLINKS,
})
if err != nil {
return nil, nil, fmt.Errorf("%w: %w", errUnsafeProcfs, err)
}
} else {
handle, err = openatFile(procRoot, threadSelf+subpath, unix.O_PATH|unix.O_CLOEXEC, 0)
if err != nil {
return nil, nil, fmt.Errorf("%w: %w", errUnsafeProcfs, err)
}
defer func() {
if Err != nil {
_ = handle.Close()
}
}()
// We can't detect bind-mounts of different parts of procfs on top of
// /proc (a-la RESOLVE_NO_XDEV), but we can at least be sure that we
// aren't on the wrong filesystem here.
if statfs, err := fstatfs(handle); err != nil {
return nil, nil, err
} else if statfs.Type != procSuperMagic {
return nil, nil, fmt.Errorf("%w: incorrect /proc/self/fd filesystem type 0x%x", errUnsafeProcfs, statfs.Type)
}
}
return handle, runtime.UnlockOSThread, nil
}
var (
hasStatxMountIdBool bool
hasStatxMountIdOnce sync.Once
)
func hasStatxMountId() bool {
hasStatxMountIdOnce.Do(func() {
var (
stx unix.Statx_t
// We don't care which mount ID we get. The kernel will give us the
// unique one if it is supported.
wantStxMask uint32 = unix.STATX_MNT_ID_UNIQUE | unix.STATX_MNT_ID
)
err := unix.Statx(-int(unix.EBADF), "/", 0, int(wantStxMask), &stx)
hasStatxMountIdBool = (err == nil && (stx.Mask&wantStxMask != 0))
})
return hasStatxMountIdBool
}
func checkSymlinkOvermount(dir *os.File, path string) error {
// If we don't have statx(STATX_MNT_ID*) support, we can't do anything.
if !hasStatxMountId() {
return nil
}
var (
stx unix.Statx_t
// We don't care which mount ID we get. The kernel will give us the
// unique one if it is supported.
wantStxMask uint32 = unix.STATX_MNT_ID_UNIQUE | unix.STATX_MNT_ID
)
// Get the mntId of our procfs handle.
err := unix.Statx(int(dir.Fd()), "", unix.AT_EMPTY_PATH, int(wantStxMask), &stx)
if err != nil {
return &os.PathError{Op: "statx", Path: dir.Name(), Err: err}
}
if stx.Mask&wantStxMask == 0 {
// It's not a kernel limitation, for some reason we couldn't get a
// mount ID. Assume it's some kind of attack.
return fmt.Errorf("%w: could not get mnt id of dir %s", errUnsafeProcfs, dir.Name())
}
expectedMountId := stx.Mnt_id
// Get the mntId of the target symlink.
stx = unix.Statx_t{}
err = unix.Statx(int(dir.Fd()), path, unix.AT_SYMLINK_NOFOLLOW, int(wantStxMask), &stx)
if err != nil {
return &os.PathError{Op: "statx", Path: dir.Name() + "/" + path, Err: err}
}
if stx.Mask&wantStxMask == 0 {
// It's not a kernel limitation, for some reason we couldn't get a
// mount ID. Assume it's some kind of attack.
return fmt.Errorf("%w: could not get mnt id of symlink %s", errUnsafeProcfs, path)
}
gotMountId := stx.Mnt_id
// As long as the directory mount is alive, even with wrapping mount IDs,
// we would expect to see a different mount ID here. (Of course, if we're
// using unsafeHostProcRoot() then an attaker could change this after we
// did this check.)
if expectedMountId != gotMountId {
return fmt.Errorf("%w: symlink %s/%s has an overmount obscuring the real link (mount ids do not match %d != %d)", errUnsafeProcfs, dir.Name(), path, expectedMountId, gotMountId)
}
return nil
}
func doProcSelfMagiclink[T any](procRoot *os.File, subPath string, fn func(procDirHandle *os.File, base string) (T, error)) (T, error) {
// We cannot operate on the magic-link directly with a handle, we need to
// create a handle to the parent of the magic-link and then do
// single-component operations on it.
dir, base := filepath.Dir(subPath), filepath.Base(subPath)
procDirHandle, closer, err := procThreadSelf(procRoot, dir)
if err != nil {
return *new(T), fmt.Errorf("get safe /proc/thread-self/%s handle: %w", dir, err)
}
defer procDirHandle.Close()
defer closer()
// Try to detect if there is a mount on top of the symlink we are about to
// read. If we are using unsafeHostProcRoot(), this could change after we
// check it (and there's nothing we can do about that) but for
// privateProcRoot() this should be guaranteed to be safe (at least since
// Linux 5.12[1], when anonymous mount namespaces were completely isolated
// from external mounts including mount propagation events).
//
// [1]: Linux commit ee2e3f50629f ("mount: fix mounting of detached mounts
// onto targets that reside on shared mounts").
if err := checkSymlinkOvermount(procDirHandle, base); err != nil {
return *new(T), fmt.Errorf("check safety of %s proc magiclink: %w", subPath, err)
}
return fn(procDirHandle, base)
}
func doRawProcSelfFdReadlink(procRoot *os.File, fd int) (string, error) {
fdPath := fmt.Sprintf("fd/%d", fd)
return doProcSelfMagiclink(procRoot, fdPath, readlinkatFile)
}
func rawProcSelfFdReadlink(fd int) (string, error) {
procRoot, err := getProcRoot()
if err != nil {
return "", err
}
return doRawProcSelfFdReadlink(procRoot, fd)
}
func procSelfFdReadlink(f *os.File) (string, error) {
return rawProcSelfFdReadlink(int(f.Fd()))
}
var (
errPossibleBreakout = errors.New("possible breakout detected")
errInvalidDirectory = errors.New("wandered into deleted directory")
errDeletedInode = errors.New("cannot verify path of deleted inode")
)
func isDeadInode(file *os.File) error {
// If the nlink of a file drops to 0, there is an attacker deleting
// directories during our walk, which could result in weird /proc values.
// It's better to error out in this case.
stat, err := fstat(file)
if err != nil {
return fmt.Errorf("check for dead inode: %w", err)
}
if stat.Nlink == 0 {
err := errDeletedInode
if stat.Mode&unix.S_IFMT == unix.S_IFDIR {
err = errInvalidDirectory
}
return fmt.Errorf("%w %q", err, file.Name())
}
return nil
}
func getUmask() int {
// umask is a per-thread property, but it is inherited by children, so we
// need to lock our OS thread to make sure that no other goroutine runs in
// this thread and no goroutines are spawned from this thread until we
// revert to the old umask.
//
// We could parse /proc/self/status to avoid this get-set problem, but
// /proc/thread-self requires LockOSThread anyway, so there's no real
// benefit over just using umask(2).
runtime.LockOSThread()
umask := unix.Umask(0)
unix.Umask(umask)
runtime.UnlockOSThread()
return umask
}
func checkProcSelfFdPath(path string, file *os.File) error {
if err := isDeadInode(file); err != nil {
return err
}
actualPath, err := procSelfFdReadlink(file)
if err != nil {
return fmt.Errorf("get path of handle: %w", err)
}
if actualPath != path {
return fmt.Errorf("%w: handle path %q doesn't match expected path %q", errPossibleBreakout, actualPath, path)
}
return nil
}