peridot/vendor/github.com/prometheus/client_golang/prometheus/summary.go
Mustafa Gezen 8176493bc0
Add grpc-middleware-prometheus and promhttp dependencies
Signed-off-by: Mustafa Gezen <mustafa@ctrliq.com>
2022-08-31 20:06:02 +02:00

745 lines
24 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"math"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/beorn7/perks/quantile"
//nolint:staticcheck // Ignore SA1019. Need to keep deprecated package for compatibility.
"github.com/golang/protobuf/proto"
dto "github.com/prometheus/client_model/go"
)
// quantileLabel is used for the label that defines the quantile in a
// summary.
const quantileLabel = "quantile"
// A Summary captures individual observations from an event or sample stream and
// summarizes them in a manner similar to traditional summary statistics: 1. sum
// of observations, 2. observation count, 3. rank estimations.
//
// A typical use-case is the observation of request latencies. By default, a
// Summary provides the median, the 90th and the 99th percentile of the latency
// as rank estimations. However, the default behavior will change in the
// upcoming v1.0.0 of the library. There will be no rank estimations at all by
// default. For a sane transition, it is recommended to set the desired rank
// estimations explicitly.
//
// Note that the rank estimations cannot be aggregated in a meaningful way with
// the Prometheus query language (i.e. you cannot average or add them). If you
// need aggregatable quantiles (e.g. you want the 99th percentile latency of all
// queries served across all instances of a service), consider the Histogram
// metric type. See the Prometheus documentation for more details.
//
// To create Summary instances, use NewSummary.
type Summary interface {
Metric
Collector
// Observe adds a single observation to the summary. Observations are
// usually positive or zero. Negative observations are accepted but
// prevent current versions of Prometheus from properly detecting
// counter resets in the sum of observations. See
// https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
// for details.
Observe(float64)
}
var errQuantileLabelNotAllowed = fmt.Errorf(
"%q is not allowed as label name in summaries", quantileLabel,
)
// Default values for SummaryOpts.
const (
// DefMaxAge is the default duration for which observations stay
// relevant.
DefMaxAge time.Duration = 10 * time.Minute
// DefAgeBuckets is the default number of buckets used to calculate the
// age of observations.
DefAgeBuckets = 5
// DefBufCap is the standard buffer size for collecting Summary observations.
DefBufCap = 500
)
// SummaryOpts bundles the options for creating a Summary metric. It is
// mandatory to set Name to a non-empty string. While all other fields are
// optional and can safely be left at their zero value, it is recommended to set
// a help string and to explicitly set the Objectives field to the desired value
// as the default value will change in the upcoming v1.0.0 of the library.
type SummaryOpts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Summary (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the Summary must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this Summary.
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this metric. Metrics
// with the same fully-qualified name must have the same label names in
// their ConstLabels.
//
// Due to the way a Summary is represented in the Prometheus text format
// and how it is handled by the Prometheus server internally, “quantile”
// is an illegal label name. Construction of a Summary or SummaryVec
// will panic if this label name is used in ConstLabels.
//
// ConstLabels are only used rarely. In particular, do not use them to
// attach the same labels to all your metrics. Those use cases are
// better covered by target labels set by the scraping Prometheus
// server, or by one specific metric (e.g. a build_info or a
// machine_role metric). See also
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
ConstLabels Labels
// Objectives defines the quantile rank estimates with their respective
// absolute error. If Objectives[q] = e, then the value reported for q
// will be the φ-quantile value for some φ between q-e and q+e. The
// default value is an empty map, resulting in a summary without
// quantiles.
Objectives map[float64]float64
// MaxAge defines the duration for which an observation stays relevant
// for the summary. Only applies to pre-calculated quantiles, does not
// apply to _sum and _count. Must be positive. The default value is
// DefMaxAge.
MaxAge time.Duration
// AgeBuckets is the number of buckets used to exclude observations that
// are older than MaxAge from the summary. A higher number has a
// resource penalty, so only increase it if the higher resolution is
// really required. For very high observation rates, you might want to
// reduce the number of age buckets. With only one age bucket, you will
// effectively see a complete reset of the summary each time MaxAge has
// passed. The default value is DefAgeBuckets.
AgeBuckets uint32
// BufCap defines the default sample stream buffer size. The default
// value of DefBufCap should suffice for most uses. If there is a need
// to increase the value, a multiple of 500 is recommended (because that
// is the internal buffer size of the underlying package
// "github.com/bmizerany/perks/quantile").
BufCap uint32
}
// Problem with the sliding-window decay algorithm... The Merge method of
// perk/quantile is actually not working as advertised - and it might be
// unfixable, as the underlying algorithm is apparently not capable of merging
// summaries in the first place. To avoid using Merge, we are currently adding
// observations to _each_ age bucket, i.e. the effort to add a sample is
// essentially multiplied by the number of age buckets. When rotating age
// buckets, we empty the previous head stream. On scrape time, we simply take
// the quantiles from the head stream (no merging required). Result: More effort
// on observation time, less effort on scrape time, which is exactly the
// opposite of what we try to accomplish, but at least the results are correct.
//
// The quite elegant previous contraption to merge the age buckets efficiently
// on scrape time (see code up commit 6b9530d72ea715f0ba612c0120e6e09fbf1d49d0)
// can't be used anymore.
// NewSummary creates a new Summary based on the provided SummaryOpts.
func NewSummary(opts SummaryOpts) Summary {
return newSummary(
NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
),
opts,
)
}
func newSummary(desc *Desc, opts SummaryOpts, labelValues ...string) Summary {
if len(desc.variableLabels) != len(labelValues) {
panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, labelValues))
}
for _, n := range desc.variableLabels {
if n == quantileLabel {
panic(errQuantileLabelNotAllowed)
}
}
for _, lp := range desc.constLabelPairs {
if lp.GetName() == quantileLabel {
panic(errQuantileLabelNotAllowed)
}
}
if opts.Objectives == nil {
opts.Objectives = map[float64]float64{}
}
if opts.MaxAge < 0 {
panic(fmt.Errorf("illegal max age MaxAge=%v", opts.MaxAge))
}
if opts.MaxAge == 0 {
opts.MaxAge = DefMaxAge
}
if opts.AgeBuckets == 0 {
opts.AgeBuckets = DefAgeBuckets
}
if opts.BufCap == 0 {
opts.BufCap = DefBufCap
}
if len(opts.Objectives) == 0 {
// Use the lock-free implementation of a Summary without objectives.
s := &noObjectivesSummary{
desc: desc,
labelPairs: MakeLabelPairs(desc, labelValues),
counts: [2]*summaryCounts{{}, {}},
}
s.init(s) // Init self-collection.
return s
}
s := &summary{
desc: desc,
objectives: opts.Objectives,
sortedObjectives: make([]float64, 0, len(opts.Objectives)),
labelPairs: MakeLabelPairs(desc, labelValues),
hotBuf: make([]float64, 0, opts.BufCap),
coldBuf: make([]float64, 0, opts.BufCap),
streamDuration: opts.MaxAge / time.Duration(opts.AgeBuckets),
}
s.headStreamExpTime = time.Now().Add(s.streamDuration)
s.hotBufExpTime = s.headStreamExpTime
for i := uint32(0); i < opts.AgeBuckets; i++ {
s.streams = append(s.streams, s.newStream())
}
s.headStream = s.streams[0]
for qu := range s.objectives {
s.sortedObjectives = append(s.sortedObjectives, qu)
}
sort.Float64s(s.sortedObjectives)
s.init(s) // Init self-collection.
return s
}
type summary struct {
selfCollector
bufMtx sync.Mutex // Protects hotBuf and hotBufExpTime.
mtx sync.Mutex // Protects every other moving part.
// Lock bufMtx before mtx if both are needed.
desc *Desc
objectives map[float64]float64
sortedObjectives []float64
labelPairs []*dto.LabelPair
sum float64
cnt uint64
hotBuf, coldBuf []float64
streams []*quantile.Stream
streamDuration time.Duration
headStream *quantile.Stream
headStreamIdx int
headStreamExpTime, hotBufExpTime time.Time
}
func (s *summary) Desc() *Desc {
return s.desc
}
func (s *summary) Observe(v float64) {
s.bufMtx.Lock()
defer s.bufMtx.Unlock()
now := time.Now()
if now.After(s.hotBufExpTime) {
s.asyncFlush(now)
}
s.hotBuf = append(s.hotBuf, v)
if len(s.hotBuf) == cap(s.hotBuf) {
s.asyncFlush(now)
}
}
func (s *summary) Write(out *dto.Metric) error {
sum := &dto.Summary{}
qs := make([]*dto.Quantile, 0, len(s.objectives))
s.bufMtx.Lock()
s.mtx.Lock()
// Swap bufs even if hotBuf is empty to set new hotBufExpTime.
s.swapBufs(time.Now())
s.bufMtx.Unlock()
s.flushColdBuf()
sum.SampleCount = proto.Uint64(s.cnt)
sum.SampleSum = proto.Float64(s.sum)
for _, rank := range s.sortedObjectives {
var q float64
if s.headStream.Count() == 0 {
q = math.NaN()
} else {
q = s.headStream.Query(rank)
}
qs = append(qs, &dto.Quantile{
Quantile: proto.Float64(rank),
Value: proto.Float64(q),
})
}
s.mtx.Unlock()
if len(qs) > 0 {
sort.Sort(quantSort(qs))
}
sum.Quantile = qs
out.Summary = sum
out.Label = s.labelPairs
return nil
}
func (s *summary) newStream() *quantile.Stream {
return quantile.NewTargeted(s.objectives)
}
// asyncFlush needs bufMtx locked.
func (s *summary) asyncFlush(now time.Time) {
s.mtx.Lock()
s.swapBufs(now)
// Unblock the original goroutine that was responsible for the mutation
// that triggered the compaction. But hold onto the global non-buffer
// state mutex until the operation finishes.
go func() {
s.flushColdBuf()
s.mtx.Unlock()
}()
}
// rotateStreams needs mtx AND bufMtx locked.
func (s *summary) maybeRotateStreams() {
for !s.hotBufExpTime.Equal(s.headStreamExpTime) {
s.headStream.Reset()
s.headStreamIdx++
if s.headStreamIdx >= len(s.streams) {
s.headStreamIdx = 0
}
s.headStream = s.streams[s.headStreamIdx]
s.headStreamExpTime = s.headStreamExpTime.Add(s.streamDuration)
}
}
// flushColdBuf needs mtx locked.
func (s *summary) flushColdBuf() {
for _, v := range s.coldBuf {
for _, stream := range s.streams {
stream.Insert(v)
}
s.cnt++
s.sum += v
}
s.coldBuf = s.coldBuf[0:0]
s.maybeRotateStreams()
}
// swapBufs needs mtx AND bufMtx locked, coldBuf must be empty.
func (s *summary) swapBufs(now time.Time) {
if len(s.coldBuf) != 0 {
panic("coldBuf is not empty")
}
s.hotBuf, s.coldBuf = s.coldBuf, s.hotBuf
// hotBuf is now empty and gets new expiration set.
for now.After(s.hotBufExpTime) {
s.hotBufExpTime = s.hotBufExpTime.Add(s.streamDuration)
}
}
type summaryCounts struct {
// sumBits contains the bits of the float64 representing the sum of all
// observations. sumBits and count have to go first in the struct to
// guarantee alignment for atomic operations.
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
sumBits uint64
count uint64
}
type noObjectivesSummary struct {
// countAndHotIdx enables lock-free writes with use of atomic updates.
// The most significant bit is the hot index [0 or 1] of the count field
// below. Observe calls update the hot one. All remaining bits count the
// number of Observe calls. Observe starts by incrementing this counter,
// and finish by incrementing the count field in the respective
// summaryCounts, as a marker for completion.
//
// Calls of the Write method (which are non-mutating reads from the
// perspective of the summary) swap the hotcold under the writeMtx
// lock. A cooldown is awaited (while locked) by comparing the number of
// observations with the initiation count. Once they match, then the
// last observation on the now cool one has completed. All cool fields must
// be merged into the new hot before releasing writeMtx.
// Fields with atomic access first! See alignment constraint:
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG
countAndHotIdx uint64
selfCollector
desc *Desc
writeMtx sync.Mutex // Only used in the Write method.
// Two counts, one is "hot" for lock-free observations, the other is
// "cold" for writing out a dto.Metric. It has to be an array of
// pointers to guarantee 64bit alignment of the histogramCounts, see
// http://golang.org/pkg/sync/atomic/#pkg-note-BUG.
counts [2]*summaryCounts
labelPairs []*dto.LabelPair
}
func (s *noObjectivesSummary) Desc() *Desc {
return s.desc
}
func (s *noObjectivesSummary) Observe(v float64) {
// We increment h.countAndHotIdx so that the counter in the lower
// 63 bits gets incremented. At the same time, we get the new value
// back, which we can use to find the currently-hot counts.
n := atomic.AddUint64(&s.countAndHotIdx, 1)
hotCounts := s.counts[n>>63]
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
break
}
}
// Increment count last as we take it as a signal that the observation
// is complete.
atomic.AddUint64(&hotCounts.count, 1)
}
func (s *noObjectivesSummary) Write(out *dto.Metric) error {
// For simplicity, we protect this whole method by a mutex. It is not in
// the hot path, i.e. Observe is called much more often than Write. The
// complication of making Write lock-free isn't worth it, if possible at
// all.
s.writeMtx.Lock()
defer s.writeMtx.Unlock()
// Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0)
// without touching the count bits. See the struct comments for a full
// description of the algorithm.
n := atomic.AddUint64(&s.countAndHotIdx, 1<<63)
// count is contained unchanged in the lower 63 bits.
count := n & ((1 << 63) - 1)
// The most significant bit tells us which counts is hot. The complement
// is thus the cold one.
hotCounts := s.counts[n>>63]
coldCounts := s.counts[(^n)>>63]
// Await cooldown.
for count != atomic.LoadUint64(&coldCounts.count) {
runtime.Gosched() // Let observations get work done.
}
sum := &dto.Summary{
SampleCount: proto.Uint64(count),
SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))),
}
out.Summary = sum
out.Label = s.labelPairs
// Finally add all the cold counts to the new hot counts and reset the cold counts.
atomic.AddUint64(&hotCounts.count, count)
atomic.StoreUint64(&coldCounts.count, 0)
for {
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + sum.GetSampleSum())
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
atomic.StoreUint64(&coldCounts.sumBits, 0)
break
}
}
return nil
}
type quantSort []*dto.Quantile
func (s quantSort) Len() int {
return len(s)
}
func (s quantSort) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s quantSort) Less(i, j int) bool {
return s[i].GetQuantile() < s[j].GetQuantile()
}
// SummaryVec is a Collector that bundles a set of Summaries that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. HTTP request latencies, partitioned by status code and method). Create
// instances with NewSummaryVec.
type SummaryVec struct {
*MetricVec
}
// NewSummaryVec creates a new SummaryVec based on the provided SummaryOpts and
// partitioned by the given label names.
//
// Due to the way a Summary is represented in the Prometheus text format and how
// it is handled by the Prometheus server internally, “quantile” is an illegal
// label name. NewSummaryVec will panic if this label name is used.
func NewSummaryVec(opts SummaryOpts, labelNames []string) *SummaryVec {
for _, ln := range labelNames {
if ln == quantileLabel {
panic(errQuantileLabelNotAllowed)
}
}
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &SummaryVec{
MetricVec: NewMetricVec(desc, func(lvs ...string) Metric {
return newSummary(desc, opts, lvs...)
}),
}
}
// GetMetricWithLabelValues returns the Summary for the given slice of label
// values (same order as the variable labels in Desc). If that combination of
// label values is accessed for the first time, a new Summary is created.
//
// It is possible to call this method without using the returned Summary to only
// create the new Summary but leave it at its starting value, a Summary without
// any observations.
//
// Keeping the Summary for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Summary from the SummaryVec. In that case,
// the Summary will still exist, but it will not be exported anymore, even if a
// Summary with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of variable labels in Desc (minus any curried labels).
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (v *SummaryVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) {
metric, err := v.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// GetMetricWith returns the Summary for the given Labels map (the label names
// must match those of the variable labels in Desc). If that label map is
// accessed for the first time, a new Summary is created. Implications of
// creating a Summary without using it and keeping the Summary for later use are
// the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the variable labels in Desc (minus any curried labels).
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (v *SummaryVec) GetMetricWith(labels Labels) (Observer, error) {
metric, err := v.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Observer), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. Not returning an
// error allows shortcuts like
// myVec.WithLabelValues("404", "GET").Observe(42.21)
func (v *SummaryVec) WithLabelValues(lvs ...string) Observer {
s, err := v.GetMetricWithLabelValues(lvs...)
if err != nil {
panic(err)
}
return s
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. Not returning an error allows shortcuts like
// myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21)
func (v *SummaryVec) With(labels Labels) Observer {
s, err := v.GetMetricWith(labels)
if err != nil {
panic(err)
}
return s
}
// CurryWith returns a vector curried with the provided labels, i.e. the
// returned vector has those labels pre-set for all labeled operations performed
// on it. The cardinality of the curried vector is reduced accordingly. The
// order of the remaining labels stays the same (just with the curried labels
// taken out of the sequence which is relevant for the
// (GetMetric)WithLabelValues methods). It is possible to curry a curried
// vector, but only with labels not yet used for currying before.
//
// The metrics contained in the SummaryVec are shared between the curried and
// uncurried vectors. They are just accessed differently. Curried and uncurried
// vectors behave identically in terms of collection. Only one must be
// registered with a given registry (usually the uncurried version). The Reset
// method deletes all metrics, even if called on a curried vector.
func (v *SummaryVec) CurryWith(labels Labels) (ObserverVec, error) {
vec, err := v.MetricVec.CurryWith(labels)
if vec != nil {
return &SummaryVec{vec}, err
}
return nil, err
}
// MustCurryWith works as CurryWith but panics where CurryWith would have
// returned an error.
func (v *SummaryVec) MustCurryWith(labels Labels) ObserverVec {
vec, err := v.CurryWith(labels)
if err != nil {
panic(err)
}
return vec
}
type constSummary struct {
desc *Desc
count uint64
sum float64
quantiles map[float64]float64
labelPairs []*dto.LabelPair
}
func (s *constSummary) Desc() *Desc {
return s.desc
}
func (s *constSummary) Write(out *dto.Metric) error {
sum := &dto.Summary{}
qs := make([]*dto.Quantile, 0, len(s.quantiles))
sum.SampleCount = proto.Uint64(s.count)
sum.SampleSum = proto.Float64(s.sum)
for rank, q := range s.quantiles {
qs = append(qs, &dto.Quantile{
Quantile: proto.Float64(rank),
Value: proto.Float64(q),
})
}
if len(qs) > 0 {
sort.Sort(quantSort(qs))
}
sum.Quantile = qs
out.Summary = sum
out.Label = s.labelPairs
return nil
}
// NewConstSummary returns a metric representing a Prometheus summary with fixed
// values for the count, sum, and quantiles. As those parameters cannot be
// changed, the returned value does not implement the Summary interface (but
// only the Metric interface). Users of this package will not have much use for
// it in regular operations. However, when implementing custom Collectors, it is
// useful as a throw-away metric that is generated on the fly to send it to
// Prometheus in the Collect method.
//
// quantiles maps ranks to quantile values. For example, a median latency of
// 0.23s and a 99th percentile latency of 0.56s would be expressed as:
// map[float64]float64{0.5: 0.23, 0.99: 0.56}
//
// NewConstSummary returns an error if the length of labelValues is not
// consistent with the variable labels in Desc or if Desc is invalid.
func NewConstSummary(
desc *Desc,
count uint64,
sum float64,
quantiles map[float64]float64,
labelValues ...string,
) (Metric, error) {
if desc.err != nil {
return nil, desc.err
}
if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil {
return nil, err
}
return &constSummary{
desc: desc,
count: count,
sum: sum,
quantiles: quantiles,
labelPairs: MakeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstSummary is a version of NewConstSummary that panics where
// NewConstMetric would have returned an error.
func MustNewConstSummary(
desc *Desc,
count uint64,
sum float64,
quantiles map[float64]float64,
labelValues ...string,
) Metric {
m, err := NewConstSummary(desc, count, sum, quantiles, labelValues...)
if err != nil {
panic(err)
}
return m
}