mirror of
https://github.com/rocky-linux/peridot.git
synced 2024-11-15 18:21:24 +00:00
399 lines
13 KiB
Go
399 lines
13 KiB
Go
// Copyright 2017, The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package diff implements an algorithm for producing edit-scripts.
|
|
// The edit-script is a sequence of operations needed to transform one list
|
|
// of symbols into another (or vice-versa). The edits allowed are insertions,
|
|
// deletions, and modifications. The summation of all edits is called the
|
|
// Levenshtein distance as this problem is well-known in computer science.
|
|
//
|
|
// This package prioritizes performance over accuracy. That is, the run time
|
|
// is more important than obtaining a minimal Levenshtein distance.
|
|
package diff
|
|
|
|
import (
|
|
"math/rand"
|
|
"time"
|
|
|
|
"github.com/google/go-cmp/cmp/internal/flags"
|
|
)
|
|
|
|
// EditType represents a single operation within an edit-script.
|
|
type EditType uint8
|
|
|
|
const (
|
|
// Identity indicates that a symbol pair is identical in both list X and Y.
|
|
Identity EditType = iota
|
|
// UniqueX indicates that a symbol only exists in X and not Y.
|
|
UniqueX
|
|
// UniqueY indicates that a symbol only exists in Y and not X.
|
|
UniqueY
|
|
// Modified indicates that a symbol pair is a modification of each other.
|
|
Modified
|
|
)
|
|
|
|
// EditScript represents the series of differences between two lists.
|
|
type EditScript []EditType
|
|
|
|
// String returns a human-readable string representing the edit-script where
|
|
// Identity, UniqueX, UniqueY, and Modified are represented by the
|
|
// '.', 'X', 'Y', and 'M' characters, respectively.
|
|
func (es EditScript) String() string {
|
|
b := make([]byte, len(es))
|
|
for i, e := range es {
|
|
switch e {
|
|
case Identity:
|
|
b[i] = '.'
|
|
case UniqueX:
|
|
b[i] = 'X'
|
|
case UniqueY:
|
|
b[i] = 'Y'
|
|
case Modified:
|
|
b[i] = 'M'
|
|
default:
|
|
panic("invalid edit-type")
|
|
}
|
|
}
|
|
return string(b)
|
|
}
|
|
|
|
// stats returns a histogram of the number of each type of edit operation.
|
|
func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
|
|
for _, e := range es {
|
|
switch e {
|
|
case Identity:
|
|
s.NI++
|
|
case UniqueX:
|
|
s.NX++
|
|
case UniqueY:
|
|
s.NY++
|
|
case Modified:
|
|
s.NM++
|
|
default:
|
|
panic("invalid edit-type")
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
|
|
// lists X and Y are equal.
|
|
func (es EditScript) Dist() int { return len(es) - es.stats().NI }
|
|
|
|
// LenX is the length of the X list.
|
|
func (es EditScript) LenX() int { return len(es) - es.stats().NY }
|
|
|
|
// LenY is the length of the Y list.
|
|
func (es EditScript) LenY() int { return len(es) - es.stats().NX }
|
|
|
|
// EqualFunc reports whether the symbols at indexes ix and iy are equal.
|
|
// When called by Difference, the index is guaranteed to be within nx and ny.
|
|
type EqualFunc func(ix int, iy int) Result
|
|
|
|
// Result is the result of comparison.
|
|
// NumSame is the number of sub-elements that are equal.
|
|
// NumDiff is the number of sub-elements that are not equal.
|
|
type Result struct{ NumSame, NumDiff int }
|
|
|
|
// BoolResult returns a Result that is either Equal or not Equal.
|
|
func BoolResult(b bool) Result {
|
|
if b {
|
|
return Result{NumSame: 1} // Equal, Similar
|
|
} else {
|
|
return Result{NumDiff: 2} // Not Equal, not Similar
|
|
}
|
|
}
|
|
|
|
// Equal indicates whether the symbols are equal. Two symbols are equal
|
|
// if and only if NumDiff == 0. If Equal, then they are also Similar.
|
|
func (r Result) Equal() bool { return r.NumDiff == 0 }
|
|
|
|
// Similar indicates whether two symbols are similar and may be represented
|
|
// by using the Modified type. As a special case, we consider binary comparisons
|
|
// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
|
|
//
|
|
// The exact ratio of NumSame to NumDiff to determine similarity may change.
|
|
func (r Result) Similar() bool {
|
|
// Use NumSame+1 to offset NumSame so that binary comparisons are similar.
|
|
return r.NumSame+1 >= r.NumDiff
|
|
}
|
|
|
|
var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
|
|
|
|
// Difference reports whether two lists of lengths nx and ny are equal
|
|
// given the definition of equality provided as f.
|
|
//
|
|
// This function returns an edit-script, which is a sequence of operations
|
|
// needed to convert one list into the other. The following invariants for
|
|
// the edit-script are maintained:
|
|
// • eq == (es.Dist()==0)
|
|
// • nx == es.LenX()
|
|
// • ny == es.LenY()
|
|
//
|
|
// This algorithm is not guaranteed to be an optimal solution (i.e., one that
|
|
// produces an edit-script with a minimal Levenshtein distance). This algorithm
|
|
// favors performance over optimality. The exact output is not guaranteed to
|
|
// be stable and may change over time.
|
|
func Difference(nx, ny int, f EqualFunc) (es EditScript) {
|
|
// This algorithm is based on traversing what is known as an "edit-graph".
|
|
// See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
|
|
// by Eugene W. Myers. Since D can be as large as N itself, this is
|
|
// effectively O(N^2). Unlike the algorithm from that paper, we are not
|
|
// interested in the optimal path, but at least some "decent" path.
|
|
//
|
|
// For example, let X and Y be lists of symbols:
|
|
// X = [A B C A B B A]
|
|
// Y = [C B A B A C]
|
|
//
|
|
// The edit-graph can be drawn as the following:
|
|
// A B C A B B A
|
|
// ┌─────────────┐
|
|
// C │_|_|\|_|_|_|_│ 0
|
|
// B │_|\|_|_|\|\|_│ 1
|
|
// A │\|_|_|\|_|_|\│ 2
|
|
// B │_|\|_|_|\|\|_│ 3
|
|
// A │\|_|_|\|_|_|\│ 4
|
|
// C │ | |\| | | | │ 5
|
|
// └─────────────┘ 6
|
|
// 0 1 2 3 4 5 6 7
|
|
//
|
|
// List X is written along the horizontal axis, while list Y is written
|
|
// along the vertical axis. At any point on this grid, if the symbol in
|
|
// list X matches the corresponding symbol in list Y, then a '\' is drawn.
|
|
// The goal of any minimal edit-script algorithm is to find a path from the
|
|
// top-left corner to the bottom-right corner, while traveling through the
|
|
// fewest horizontal or vertical edges.
|
|
// A horizontal edge is equivalent to inserting a symbol from list X.
|
|
// A vertical edge is equivalent to inserting a symbol from list Y.
|
|
// A diagonal edge is equivalent to a matching symbol between both X and Y.
|
|
|
|
// Invariants:
|
|
// • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
|
|
// • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
|
|
//
|
|
// In general:
|
|
// • fwdFrontier.X < revFrontier.X
|
|
// • fwdFrontier.Y < revFrontier.Y
|
|
// Unless, it is time for the algorithm to terminate.
|
|
fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
|
|
revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
|
|
fwdFrontier := fwdPath.point // Forward search frontier
|
|
revFrontier := revPath.point // Reverse search frontier
|
|
|
|
// Search budget bounds the cost of searching for better paths.
|
|
// The longest sequence of non-matching symbols that can be tolerated is
|
|
// approximately the square-root of the search budget.
|
|
searchBudget := 4 * (nx + ny) // O(n)
|
|
|
|
// Running the tests with the "cmp_debug" build tag prints a visualization
|
|
// of the algorithm running in real-time. This is educational for
|
|
// understanding how the algorithm works. See debug_enable.go.
|
|
f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
|
|
|
|
// The algorithm below is a greedy, meet-in-the-middle algorithm for
|
|
// computing sub-optimal edit-scripts between two lists.
|
|
//
|
|
// The algorithm is approximately as follows:
|
|
// • Searching for differences switches back-and-forth between
|
|
// a search that starts at the beginning (the top-left corner), and
|
|
// a search that starts at the end (the bottom-right corner). The goal of
|
|
// the search is connect with the search from the opposite corner.
|
|
// • As we search, we build a path in a greedy manner, where the first
|
|
// match seen is added to the path (this is sub-optimal, but provides a
|
|
// decent result in practice). When matches are found, we try the next pair
|
|
// of symbols in the lists and follow all matches as far as possible.
|
|
// • When searching for matches, we search along a diagonal going through
|
|
// through the "frontier" point. If no matches are found, we advance the
|
|
// frontier towards the opposite corner.
|
|
// • This algorithm terminates when either the X coordinates or the
|
|
// Y coordinates of the forward and reverse frontier points ever intersect.
|
|
|
|
// This algorithm is correct even if searching only in the forward direction
|
|
// or in the reverse direction. We do both because it is commonly observed
|
|
// that two lists commonly differ because elements were added to the front
|
|
// or end of the other list.
|
|
//
|
|
// Non-deterministically start with either the forward or reverse direction
|
|
// to introduce some deliberate instability so that we have the flexibility
|
|
// to change this algorithm in the future.
|
|
if flags.Deterministic || randBool {
|
|
goto forwardSearch
|
|
} else {
|
|
goto reverseSearch
|
|
}
|
|
|
|
forwardSearch:
|
|
{
|
|
// Forward search from the beginning.
|
|
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
|
|
goto finishSearch
|
|
}
|
|
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
|
|
// Search in a diagonal pattern for a match.
|
|
z := zigzag(i)
|
|
p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
|
|
switch {
|
|
case p.X >= revPath.X || p.Y < fwdPath.Y:
|
|
stop1 = true // Hit top-right corner
|
|
case p.Y >= revPath.Y || p.X < fwdPath.X:
|
|
stop2 = true // Hit bottom-left corner
|
|
case f(p.X, p.Y).Equal():
|
|
// Match found, so connect the path to this point.
|
|
fwdPath.connect(p, f)
|
|
fwdPath.append(Identity)
|
|
// Follow sequence of matches as far as possible.
|
|
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
|
|
if !f(fwdPath.X, fwdPath.Y).Equal() {
|
|
break
|
|
}
|
|
fwdPath.append(Identity)
|
|
}
|
|
fwdFrontier = fwdPath.point
|
|
stop1, stop2 = true, true
|
|
default:
|
|
searchBudget-- // Match not found
|
|
}
|
|
debug.Update()
|
|
}
|
|
// Advance the frontier towards reverse point.
|
|
if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
|
|
fwdFrontier.X++
|
|
} else {
|
|
fwdFrontier.Y++
|
|
}
|
|
goto reverseSearch
|
|
}
|
|
|
|
reverseSearch:
|
|
{
|
|
// Reverse search from the end.
|
|
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
|
|
goto finishSearch
|
|
}
|
|
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
|
|
// Search in a diagonal pattern for a match.
|
|
z := zigzag(i)
|
|
p := point{revFrontier.X - z, revFrontier.Y + z}
|
|
switch {
|
|
case fwdPath.X >= p.X || revPath.Y < p.Y:
|
|
stop1 = true // Hit bottom-left corner
|
|
case fwdPath.Y >= p.Y || revPath.X < p.X:
|
|
stop2 = true // Hit top-right corner
|
|
case f(p.X-1, p.Y-1).Equal():
|
|
// Match found, so connect the path to this point.
|
|
revPath.connect(p, f)
|
|
revPath.append(Identity)
|
|
// Follow sequence of matches as far as possible.
|
|
for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
|
|
if !f(revPath.X-1, revPath.Y-1).Equal() {
|
|
break
|
|
}
|
|
revPath.append(Identity)
|
|
}
|
|
revFrontier = revPath.point
|
|
stop1, stop2 = true, true
|
|
default:
|
|
searchBudget-- // Match not found
|
|
}
|
|
debug.Update()
|
|
}
|
|
// Advance the frontier towards forward point.
|
|
if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
|
|
revFrontier.X--
|
|
} else {
|
|
revFrontier.Y--
|
|
}
|
|
goto forwardSearch
|
|
}
|
|
|
|
finishSearch:
|
|
// Join the forward and reverse paths and then append the reverse path.
|
|
fwdPath.connect(revPath.point, f)
|
|
for i := len(revPath.es) - 1; i >= 0; i-- {
|
|
t := revPath.es[i]
|
|
revPath.es = revPath.es[:i]
|
|
fwdPath.append(t)
|
|
}
|
|
debug.Finish()
|
|
return fwdPath.es
|
|
}
|
|
|
|
type path struct {
|
|
dir int // +1 if forward, -1 if reverse
|
|
point // Leading point of the EditScript path
|
|
es EditScript
|
|
}
|
|
|
|
// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
|
|
// to the edit-script to connect p.point to dst.
|
|
func (p *path) connect(dst point, f EqualFunc) {
|
|
if p.dir > 0 {
|
|
// Connect in forward direction.
|
|
for dst.X > p.X && dst.Y > p.Y {
|
|
switch r := f(p.X, p.Y); {
|
|
case r.Equal():
|
|
p.append(Identity)
|
|
case r.Similar():
|
|
p.append(Modified)
|
|
case dst.X-p.X >= dst.Y-p.Y:
|
|
p.append(UniqueX)
|
|
default:
|
|
p.append(UniqueY)
|
|
}
|
|
}
|
|
for dst.X > p.X {
|
|
p.append(UniqueX)
|
|
}
|
|
for dst.Y > p.Y {
|
|
p.append(UniqueY)
|
|
}
|
|
} else {
|
|
// Connect in reverse direction.
|
|
for p.X > dst.X && p.Y > dst.Y {
|
|
switch r := f(p.X-1, p.Y-1); {
|
|
case r.Equal():
|
|
p.append(Identity)
|
|
case r.Similar():
|
|
p.append(Modified)
|
|
case p.Y-dst.Y >= p.X-dst.X:
|
|
p.append(UniqueY)
|
|
default:
|
|
p.append(UniqueX)
|
|
}
|
|
}
|
|
for p.X > dst.X {
|
|
p.append(UniqueX)
|
|
}
|
|
for p.Y > dst.Y {
|
|
p.append(UniqueY)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (p *path) append(t EditType) {
|
|
p.es = append(p.es, t)
|
|
switch t {
|
|
case Identity, Modified:
|
|
p.add(p.dir, p.dir)
|
|
case UniqueX:
|
|
p.add(p.dir, 0)
|
|
case UniqueY:
|
|
p.add(0, p.dir)
|
|
}
|
|
debug.Update()
|
|
}
|
|
|
|
type point struct{ X, Y int }
|
|
|
|
func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
|
|
|
|
// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
|
|
// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
|
|
func zigzag(x int) int {
|
|
if x&1 != 0 {
|
|
x = ^x
|
|
}
|
|
return x >> 1
|
|
}
|