peridot/vendor/go.temporal.io/sdk/internal/internal_workflow.go
2022-07-07 22:13:21 +02:00

1470 lines
44 KiB
Go

// The MIT License
//
// Copyright (c) 2020 Temporal Technologies Inc. All rights reserved.
//
// Copyright (c) 2020 Uber Technologies, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package internal
// All code in this file is private to the package.
import (
"errors"
"fmt"
"reflect"
"runtime"
"strings"
"sync"
"time"
"unicode"
commonpb "go.temporal.io/api/common/v1"
enumspb "go.temporal.io/api/enums/v1"
"go.uber.org/atomic"
"go.temporal.io/sdk/converter"
"go.temporal.io/sdk/internal/common/metrics"
)
const (
defaultSignalChannelSize = 100000 // really large buffering size(100K)
panicIllegalAccessCoroutinueState = "getState: illegal access from outside of workflow context"
)
type (
syncWorkflowDefinition struct {
workflow workflow
dispatcher dispatcher
cancel CancelFunc
rootCtx Context
}
workflowResult struct {
workflowResult *commonpb.Payloads
error error
}
futureImpl struct {
value interface{}
err error
ready bool
channel *channelImpl
chained []asyncFuture // Futures that are chained to this one
}
// Implements WaitGroup interface
waitGroupImpl struct {
n int // the number of coroutines to wait on
waiting bool // indicates whether WaitGroup.Wait() has been called yet for the WaitGroup
future Future // future to signal that all awaited members of the WaitGroup have completed
settable Settable // used to unblock the future when all coroutines have completed
}
// Dispatcher is a container of a set of coroutines.
dispatcher interface {
// ExecuteUntilAllBlocked executes coroutines one by one in deterministic order
// until all of them are completed or blocked on Channel or Selector or timeout is reached.
ExecuteUntilAllBlocked(deadlockDetectionTimeout time.Duration) (err error)
// IsDone returns true when all of coroutines are completed
IsDone() bool
IsExecuting() bool
Close() // Destroys all coroutines without waiting for their completion
StackTrace() string // Stack trace of all coroutines owned by the Dispatcher instance
// Create coroutine. To be called from within other coroutine.
// Used by the interceptors
NewCoroutine(ctx Context, name string, f func(ctx Context)) Context
}
// Workflow is an interface that any workflow should implement.
// Code of a workflow must be deterministic. It must use workflow.Channel, workflow.Selector, and workflow.Go instead of
// native channels, select and go. It also must not use range operation over map as it is randomized by go runtime.
// All time manipulation should use current time returned by GetTime(ctx) method.
// Note that workflow.Context is used instead of context.Context to avoid use of raw channels.
workflow interface {
Execute(ctx Context, input *commonpb.Payloads) (result *commonpb.Payloads, err error)
}
sendCallback struct {
value interface{}
fn func() bool // false indicates that callback didn't accept the value
}
receiveCallback struct {
// false result means that callback didn't accept the value and it is still up for delivery
fn func(v interface{}, more bool) bool
}
channelImpl struct {
name string // human readable channel name
size int // Channel buffer size. 0 for non buffered.
buffer []interface{} // buffered messages
blockedSends []*sendCallback // puts waiting when buffer is full.
blockedReceives []*receiveCallback // receives waiting when no messages are available.
closed bool // true if channel is closed.
recValue *interface{} // Used only while receiving value, this is used as pre-fetch buffer value from the channel.
dataConverter converter.DataConverter // for decode data
env WorkflowEnvironment
}
// Single case statement of the Select
selectCase struct {
channel *channelImpl // Channel of this case.
receiveFunc *func(c ReceiveChannel, more bool) // function to call when channel has a message. nil for send case.
sendFunc *func() // function to call when channel accepted a message. nil for receive case.
sendValue *interface{} // value to send to the channel. Used only for send case.
future asyncFuture // Used for future case
futureFunc *func(f Future) // function to call when Future is ready
}
// Implements Selector interface
selectorImpl struct {
name string
cases []*selectCase // cases that this select is comprised from
defaultFunc *func() // default case
}
// unblockFunc is passed evaluated by a coroutine yield. When it returns false the yield returns to a caller.
// stackDepth is the depth of stack from the last blocking call relevant to user.
// Used to truncate internal stack frames from thread stack.
unblockFunc func(status string, stackDepth int) (keepBlocked bool)
coroutineState struct {
name string
dispatcher *dispatcherImpl // dispatcher this context belongs to
aboutToBlock chan bool // used to notify dispatcher that coroutine that owns this context is about to block
unblock chan unblockFunc // used to notify coroutine that it should continue executing.
keptBlocked bool // true indicates that coroutine didn't make any progress since the last yield unblocking
closed atomic.Bool // indicates that owning coroutine has finished execution
blocked atomic.Bool
panicError error // non nil if coroutine had unhandled panic
}
dispatcherImpl struct {
sequence int
channelSequence int // used to name channels
selectorSequence int // used to name channels
coroutines []*coroutineState
executing bool // currently running ExecuteUntilAllBlocked. Used to avoid recursive calls to it.
mutex sync.Mutex // used to synchronize executing
closed bool
interceptor WorkflowOutboundInterceptor
}
// WorkflowOptions options passed to the workflow function
// The current timeout resolution implementation is in seconds and uses math.Ceil() as the duration. But is
// subjected to change in the future.
WorkflowOptions struct {
TaskQueueName string
WorkflowExecutionTimeout time.Duration
WorkflowRunTimeout time.Duration
WorkflowTaskTimeout time.Duration
Namespace string
WorkflowID string
WaitForCancellation bool
WorkflowIDReusePolicy enumspb.WorkflowIdReusePolicy
DataConverter converter.DataConverter
RetryPolicy *commonpb.RetryPolicy
CronSchedule string
ContextPropagators []ContextPropagator
Memo map[string]interface{}
SearchAttributes map[string]interface{}
ParentClosePolicy enumspb.ParentClosePolicy
signalChannels map[string]Channel
queryHandlers map[string]*queryHandler
}
// ExecuteWorkflowParams parameters of the workflow invocation
ExecuteWorkflowParams struct {
WorkflowOptions
WorkflowType *WorkflowType
Input *commonpb.Payloads
Header *commonpb.Header
attempt int32 // used by test framework to support child workflow retry
scheduledTime time.Time // used by test framework to support child workflow retry
lastCompletionResult *commonpb.Payloads // used by test framework to support cron
}
// decodeFutureImpl
decodeFutureImpl struct {
*futureImpl
fn interface{}
}
childWorkflowFutureImpl struct {
*decodeFutureImpl // for child workflow result
executionFuture *futureImpl // for child workflow execution future
}
asyncFuture interface {
Future
// Used by selectorImpl
// If Future is ready returns its value immediately.
// If not registers callback which is called when it is ready.
GetAsync(callback *receiveCallback) (v interface{}, ok bool, err error)
// Used by selectorImpl
RemoveReceiveCallback(callback *receiveCallback)
// This future will added to list of dependency futures.
ChainFuture(f Future)
// Gets the current value and error.
// Make sure this is called once the future is ready.
GetValueAndError() (v interface{}, err error)
Set(value interface{}, err error)
}
queryHandler struct {
fn interface{}
queryType string
dataConverter converter.DataConverter
}
)
const (
workflowEnvironmentContextKey = "workflowEnv"
workflowInterceptorContextKey = "workflowInterceptor"
localActivityFnContextKey = "localActivityFn"
workflowEnvInterceptorContextKey = "envInterceptor"
workflowResultContextKey = "workflowResult"
coroutinesContextKey = "coroutines"
workflowEnvOptionsContextKey = "wfEnvOptions"
)
// Assert that structs do indeed implement the interfaces
var _ Channel = (*channelImpl)(nil)
var _ Selector = (*selectorImpl)(nil)
var _ WaitGroup = (*waitGroupImpl)(nil)
var _ dispatcher = (*dispatcherImpl)(nil)
var stackBuf [100000]byte
// Pointer to pointer to workflow result
func getWorkflowResultPointerPointer(ctx Context) **workflowResult {
rpp := ctx.Value(workflowResultContextKey)
if rpp == nil {
panic("getWorkflowResultPointerPointer: Not a workflow context")
}
return rpp.(**workflowResult)
}
func getWorkflowEnvironment(ctx Context) WorkflowEnvironment {
wc := ctx.Value(workflowEnvironmentContextKey)
if wc == nil {
panic("getWorkflowContext: Not a workflow context")
}
return wc.(WorkflowEnvironment)
}
func getWorkflowEnvironmentInterceptor(ctx Context) *workflowEnvironmentInterceptor {
wc := ctx.Value(workflowEnvInterceptorContextKey)
if wc == nil {
panic("getWorkflowContext: Not a workflow context")
}
return wc.(*workflowEnvironmentInterceptor)
}
type workflowEnvironmentInterceptor struct {
env WorkflowEnvironment
dispatcher dispatcher
inboundInterceptor WorkflowInboundInterceptor
fn interface{}
outboundInterceptor WorkflowOutboundInterceptor
}
func (wc *workflowEnvironmentInterceptor) Go(ctx Context, name string, f func(ctx Context)) Context {
return wc.dispatcher.NewCoroutine(ctx, name, f)
}
func getWorkflowOutboundInterceptor(ctx Context) WorkflowOutboundInterceptor {
wc := ctx.Value(workflowInterceptorContextKey)
if wc == nil {
panic("getWorkflowOutboundInterceptor: Not a workflow context")
}
return wc.(WorkflowOutboundInterceptor)
}
func (f *futureImpl) Get(ctx Context, valuePtr interface{}) error {
more := f.channel.Receive(ctx, nil)
if more {
panic("not closed")
}
if !f.ready {
panic("not ready")
}
if f.err != nil || f.value == nil || valuePtr == nil {
return f.err
}
rf := reflect.ValueOf(valuePtr)
if rf.Type().Kind() != reflect.Ptr {
return errors.New("valuePtr parameter is not a pointer")
}
if payload, ok := f.value.(*commonpb.Payloads); ok {
if _, ok2 := valuePtr.(**commonpb.Payloads); !ok2 {
if err := decodeArg(getDataConverterFromWorkflowContext(ctx), payload, valuePtr); err != nil {
return err
}
return f.err
}
}
fv := reflect.ValueOf(f.value)
// If the value set was a pointer and is the same type as the wanted result,
// instead of panicking because it is not a pointer to a pointer, we will just
// set the pointer
if fv.Kind() == reflect.Ptr && fv.Type() == rf.Type() {
rf.Elem().Set(fv.Elem())
} else {
rf.Elem().Set(fv)
}
return f.err
}
// Used by selectorImpl
// If Future is ready returns its value immediately.
// If not registers callback which is called when it is ready.
func (f *futureImpl) GetAsync(callback *receiveCallback) (v interface{}, ok bool, err error) {
_, _, more := f.channel.receiveAsyncImpl(callback)
// Future uses Channel.Close to indicate that it is ready.
// So more being true (channel is still open) indicates future is not ready.
if more {
return nil, false, nil
}
if !f.ready {
panic("not ready")
}
return f.value, true, f.err
}
// RemoveReceiveCallback removes the callback from future's channel to avoid closure leak.
// Used by selectorImpl
func (f *futureImpl) RemoveReceiveCallback(callback *receiveCallback) {
f.channel.removeReceiveCallback(callback)
}
func (f *futureImpl) IsReady() bool {
return f.ready
}
func (f *futureImpl) Set(value interface{}, err error) {
if f.ready {
panic("already set")
}
f.value = value
f.err = err
f.ready = true
f.channel.Close()
for _, ch := range f.chained {
ch.Set(f.value, f.err)
}
}
func (f *futureImpl) SetValue(value interface{}) {
if f.ready {
panic("already set")
}
f.Set(value, nil)
}
func (f *futureImpl) SetError(err error) {
if f.ready {
panic("already set")
}
f.Set(nil, err)
}
func (f *futureImpl) Chain(future Future) {
if f.ready {
panic("already set")
}
ch, ok := future.(asyncFuture)
if !ok {
panic("cannot chain Future that wasn't created with workflow.NewFuture")
}
if !ch.IsReady() {
ch.ChainFuture(f)
return
}
val, err := ch.GetValueAndError()
f.value = val
f.err = err
f.ready = true
}
func (f *futureImpl) ChainFuture(future Future) {
f.chained = append(f.chained, future.(asyncFuture))
}
func (f *futureImpl) GetValueAndError() (interface{}, error) {
return f.value, f.err
}
func (f *childWorkflowFutureImpl) GetChildWorkflowExecution() Future {
return f.executionFuture
}
func (f *childWorkflowFutureImpl) SignalChildWorkflow(ctx Context, signalName string, data interface{}) Future {
var childExec WorkflowExecution
if err := f.GetChildWorkflowExecution().Get(ctx, &childExec); err != nil {
return f.GetChildWorkflowExecution()
}
i := getWorkflowOutboundInterceptor(ctx)
// Put header on context before executing
ctx = workflowContextWithNewHeader(ctx)
return i.SignalChildWorkflow(ctx, childExec.ID, signalName, data)
}
func newWorkflowContext(
env WorkflowEnvironment,
interceptors []WorkerInterceptor,
) (*workflowEnvironmentInterceptor, Context, error) {
// Create context with default values
ctx := WithValue(background, workflowEnvironmentContextKey, env)
var resultPtr *workflowResult
ctx = WithValue(ctx, workflowResultContextKey, &resultPtr)
info := env.WorkflowInfo()
ctx = WithWorkflowNamespace(ctx, info.Namespace)
ctx = WithWorkflowTaskQueue(ctx, info.TaskQueueName)
getWorkflowEnvOptions(ctx).WorkflowExecutionTimeout = info.WorkflowExecutionTimeout
ctx = WithWorkflowRunTimeout(ctx, info.WorkflowRunTimeout)
ctx = WithWorkflowTaskTimeout(ctx, info.WorkflowTaskTimeout)
ctx = WithTaskQueue(ctx, info.TaskQueueName)
ctx = WithDataConverter(ctx, env.GetDataConverter())
ctx = withContextPropagators(ctx, env.GetContextPropagators())
getActivityOptions(ctx).OriginalTaskQueueName = info.TaskQueueName
// Create interceptor and put it on context as inbound and put it on context
// as the default outbound interceptor before init
envInterceptor := &workflowEnvironmentInterceptor{env: env}
envInterceptor.inboundInterceptor = envInterceptor
envInterceptor.outboundInterceptor = envInterceptor
ctx = WithValue(ctx, workflowEnvInterceptorContextKey, envInterceptor)
ctx = WithValue(ctx, workflowInterceptorContextKey, envInterceptor.outboundInterceptor)
// Intercept, run init, and put the new outbound interceptor on the context
for i := len(interceptors) - 1; i >= 0; i-- {
envInterceptor.inboundInterceptor = interceptors[i].InterceptWorkflow(ctx, envInterceptor.inboundInterceptor)
}
err := envInterceptor.inboundInterceptor.Init(envInterceptor)
if err != nil {
return nil, nil, err
}
ctx = WithValue(ctx, workflowInterceptorContextKey, envInterceptor.outboundInterceptor)
return envInterceptor, ctx, nil
}
func (d *syncWorkflowDefinition) Execute(env WorkflowEnvironment, header *commonpb.Header, input *commonpb.Payloads) {
envInterceptor, rootCtx, err := newWorkflowContext(env, env.GetRegistry().interceptors)
if err != nil {
panic(err)
}
dispatcher, rootCtx := newDispatcher(
rootCtx,
envInterceptor,
func(ctx Context) {
r := &workflowResult{}
// We want to execute the user workflow definition from the first workflow task started,
// so they can see everything before that. Here we would have all initialization done, hence
// we are yielding.
state := getState(d.rootCtx)
state.yield("yield before executing to setup state")
// TODO: @shreyassrivatsan - add workflow trace span here
r.workflowResult, r.error = d.workflow.Execute(d.rootCtx, input)
rpp := getWorkflowResultPointerPointer(ctx)
*rpp = r
})
// set the information from the headers that is to be propagated in the workflow context
rootCtx, err = workflowContextWithHeaderPropagated(rootCtx, header, env.GetContextPropagators())
if err != nil {
panic(err)
}
d.rootCtx, d.cancel = WithCancel(rootCtx)
d.dispatcher = dispatcher
envInterceptor.dispatcher = dispatcher
getWorkflowEnvironment(d.rootCtx).RegisterCancelHandler(func() {
// It is ok to call this method multiple times.
// it doesn't do anything new, the context remains canceled.
d.cancel()
})
getWorkflowEnvironment(d.rootCtx).RegisterSignalHandler(
func(name string, input *commonpb.Payloads, header *commonpb.Header) error {
// Put the header on context
rootCtx, err := workflowContextWithHeaderPropagated(d.rootCtx, header, env.GetContextPropagators())
if err != nil {
return err
}
return envInterceptor.inboundInterceptor.HandleSignal(rootCtx, &HandleSignalInput{SignalName: name, Arg: input})
},
)
getWorkflowEnvironment(d.rootCtx).RegisterQueryHandler(
func(queryType string, queryArgs *commonpb.Payloads, header *commonpb.Header) (*commonpb.Payloads, error) {
// Put the header on context if server supports it
rootCtx, err := workflowContextWithHeaderPropagated(d.rootCtx, header, env.GetContextPropagators())
if err != nil {
return nil, err
}
eo := getWorkflowEnvOptions(rootCtx)
// A handler must be present since it is needed for argument decoding,
// even if the interceptor intercepts query handling
handler, ok := eo.queryHandlers[queryType]
if !ok {
keys := []string{QueryTypeStackTrace, QueryTypeOpenSessions}
for k := range eo.queryHandlers {
keys = append(keys, k)
}
return nil, fmt.Errorf("unknown queryType %v. KnownQueryTypes=%v", queryType, keys)
}
// Decode the arguments
args, err := decodeArgsToRawValues(handler.dataConverter, reflect.TypeOf(handler.fn), queryArgs)
if err != nil {
return nil, fmt.Errorf("unable to decode the input for queryType: %v, with error: %w", handler.queryType, err)
}
// Invoke
result, err := envInterceptor.inboundInterceptor.HandleQuery(
rootCtx,
&HandleQueryInput{QueryType: queryType, Args: args},
)
// Encode the result
var serializedResult *commonpb.Payloads
if err == nil && result != nil {
serializedResult, err = encodeArg(handler.dataConverter, result)
}
return serializedResult, err
},
)
}
func (d *syncWorkflowDefinition) OnWorkflowTaskStarted(deadlockDetectionTimeout time.Duration) {
executeDispatcher(d.rootCtx, d.dispatcher, deadlockDetectionTimeout)
}
func (d *syncWorkflowDefinition) StackTrace() string {
return d.dispatcher.StackTrace()
}
func (d *syncWorkflowDefinition) Close() {
if d.dispatcher != nil {
d.dispatcher.Close()
}
}
// NewDispatcher creates a new Dispatcher instance with a root coroutine function.
// Context passed to the root function is child of the passed rootCtx.
// This way rootCtx can be used to pass values to the coroutine code.
func newDispatcher(rootCtx Context, interceptor *workflowEnvironmentInterceptor, root func(ctx Context)) (*dispatcherImpl, Context) {
result := &dispatcherImpl{interceptor: interceptor.outboundInterceptor}
interceptor.dispatcher = result
ctxWithState := result.interceptor.Go(rootCtx, "root", root)
return result, ctxWithState
}
// executeDispatcher executed coroutines in the calling thread and calls workflow completion callbacks
// if root workflow function returned
func executeDispatcher(ctx Context, dispatcher dispatcher, timeout time.Duration) {
env := getWorkflowEnvironment(ctx)
panicErr := dispatcher.ExecuteUntilAllBlocked(timeout)
if panicErr != nil {
env.Complete(nil, panicErr)
return
}
rp := *getWorkflowResultPointerPointer(ctx)
if rp == nil {
// Result is not set, so workflow is still executing
return
}
us := getWorkflowEnvOptions(ctx).getUnhandledSignals()
if len(us) > 0 {
env.GetLogger().Info("Workflow has unhandled signals", "SignalNames", us)
}
env.Complete(rp.workflowResult, rp.error)
}
// For troubleshooting stack pretty printing only.
// Set to true to see full stack trace that includes framework methods.
const disableCleanStackTraces = false
func getState(ctx Context) *coroutineState {
s := ctx.Value(coroutinesContextKey)
if s == nil {
panic("getState: not workflow context")
}
state := s.(*coroutineState)
if !state.dispatcher.IsExecuting() {
panic(panicIllegalAccessCoroutinueState)
}
return state
}
func (c *channelImpl) CanReceiveWithoutBlocking() bool {
return c.recValue != nil || len(c.buffer) > 0 || len(c.blockedSends) > 0 || c.closed
}
func (c *channelImpl) CanSendWithoutBlocking() bool {
return len(c.buffer) < c.size || len(c.blockedReceives) > 0
}
func (c *channelImpl) Receive(ctx Context, valuePtr interface{}) (more bool) {
state := getState(ctx)
hasResult := false
var result interface{}
callback := &receiveCallback{
fn: func(v interface{}, m bool) bool {
result = v
hasResult = true
more = m
return true
},
}
for {
hasResult = false
v, ok, m := c.receiveAsyncImpl(callback)
if !ok && !m { // channel closed and empty
return m
}
if ok || !m {
err := c.assignValue(v, valuePtr)
if err == nil {
state.unblocked()
return m
}
continue // corrupt signal. Drop and reset process
}
for {
if hasResult {
err := c.assignValue(result, valuePtr)
if err == nil {
state.unblocked()
return more
}
break // Corrupt signal. Drop and reset process.
}
state.yield(fmt.Sprintf("blocked on %s.Receive", c.name))
}
}
}
func (c *channelImpl) ReceiveAsync(valuePtr interface{}) (ok bool) {
ok, _ = c.ReceiveAsyncWithMoreFlag(valuePtr)
return ok
}
func (c *channelImpl) ReceiveAsyncWithMoreFlag(valuePtr interface{}) (ok bool, more bool) {
for {
v, ok, more := c.receiveAsyncImpl(nil)
if !ok && !more { // channel closed and empty
return ok, more
}
err := c.assignValue(v, valuePtr)
if err != nil {
continue
// keep consuming until a good signal is hit or channel is drained
}
return ok, more
}
}
// ok = true means that value was received
// more = true means that channel is not closed and more deliveries are possible
func (c *channelImpl) receiveAsyncImpl(callback *receiveCallback) (v interface{}, ok bool, more bool) {
if c.recValue != nil {
r := *c.recValue
c.recValue = nil
return r, true, true
}
if len(c.buffer) > 0 {
r := c.buffer[0]
c.buffer[0] = nil
c.buffer = c.buffer[1:]
// Move blocked sends into buffer
for len(c.blockedSends) > 0 {
b := c.blockedSends[0]
c.blockedSends[0] = nil
c.blockedSends = c.blockedSends[1:]
if b.fn() {
c.buffer = append(c.buffer, b.value)
break
}
}
return r, true, true
}
if c.closed {
return nil, false, false
}
for len(c.blockedSends) > 0 {
b := c.blockedSends[0]
c.blockedSends[0] = nil
c.blockedSends = c.blockedSends[1:]
if b.fn() {
return b.value, true, true
}
}
if callback != nil {
c.blockedReceives = append(c.blockedReceives, callback)
}
return nil, false, true
}
func (c *channelImpl) removeReceiveCallback(callback *receiveCallback) {
for i, blockedCallback := range c.blockedReceives {
if callback == blockedCallback {
c.blockedReceives = append(c.blockedReceives[:i], c.blockedReceives[i+1:]...)
break
}
}
}
func (c *channelImpl) removeSendCallback(callback *sendCallback) {
for i, blockedCallback := range c.blockedSends {
if callback == blockedCallback {
c.blockedSends = append(c.blockedSends[:i], c.blockedSends[i+1:]...)
break
}
}
}
func (c *channelImpl) Send(ctx Context, v interface{}) {
state := getState(ctx)
valueConsumed := false
callback := &sendCallback{
value: v,
fn: func() bool {
valueConsumed = true
return true
},
}
ok := c.sendAsyncImpl(v, callback)
if ok {
state.unblocked()
return
}
for {
if valueConsumed {
state.unblocked()
return
}
// Check for closed in the loop as close can be called when send is blocked
if c.closed {
panic("Closed channel")
}
state.yield(fmt.Sprintf("blocked on %s.Send", c.name))
}
}
func (c *channelImpl) SendAsync(v interface{}) (ok bool) {
return c.sendAsyncImpl(v, nil)
}
func (c *channelImpl) sendAsyncImpl(v interface{}, pair *sendCallback) (ok bool) {
if c.closed {
panic("Closed channel")
}
for len(c.blockedReceives) > 0 {
blockedGet := c.blockedReceives[0].fn
c.blockedReceives[0] = nil
c.blockedReceives = c.blockedReceives[1:]
// false from callback indicates that value wasn't consumed
if blockedGet(v, true) {
return true
}
}
if len(c.buffer) < c.size {
c.buffer = append(c.buffer, v)
return true
}
if pair != nil {
c.blockedSends = append(c.blockedSends, pair)
}
return false
}
func (c *channelImpl) Close() {
c.closed = true
// Use a copy of blockedReceives for iteration as invoking callback could result in modification
copy := append(c.blockedReceives[:0:0], c.blockedReceives...)
for _, callback := range copy {
callback.fn(nil, false)
}
// All blocked sends are going to panic
}
// Takes a value and assigns that 'to' value. logs a metric if it is unable to deserialize
func (c *channelImpl) assignValue(from interface{}, to interface{}) error {
err := decodeAndAssignValue(c.dataConverter, from, to)
// add to metrics
if err != nil {
c.env.GetLogger().Error(fmt.Sprintf("Deserialization error. Corrupted signal received on channel %s.", c.name), tagError, err)
c.env.GetMetricsHandler().Counter(metrics.CorruptedSignalsCounter).Inc(1)
}
return err
}
// initialYield called at the beginning of the coroutine execution
// stackDepth is the depth of top of the stack to omit when stack trace is generated
// to hide frames internal to the framework.
func (s *coroutineState) initialYield(stackDepth int, status string) {
if s.blocked.Swap(true) {
panic("trying to block on coroutine which is already blocked, most likely a wrong Context is used to do blocking" +
" call (like Future.Get() or Channel.Receive()")
}
keepBlocked := true
for keepBlocked {
f := <-s.unblock
keepBlocked = f(status, stackDepth+1)
}
s.blocked.Swap(false)
}
// yield indicates that coroutine cannot make progress and should sleep
// this call blocks
func (s *coroutineState) yield(status string) {
s.aboutToBlock <- true
s.initialYield(3, status) // omit three levels of stack. To adjust change to 0 and count the lines to remove.
s.keptBlocked = true
}
func getStackTrace(coroutineName, status string, stackDepth int) string {
top := fmt.Sprintf("coroutine %s [%s]:", coroutineName, status)
// Omit top stackDepth frames + top status line.
// Omit bottom two frames which is wrapping of coroutine in a goroutine.
return getStackTraceRaw(top, stackDepth*2+1, 4)
}
func getStackTraceRaw(top string, omitTop, omitBottom int) string {
stack := stackBuf[:runtime.Stack(stackBuf[:], false)]
rawStack := strings.TrimRightFunc(string(stack), unicode.IsSpace)
if disableCleanStackTraces {
return rawStack
}
lines := strings.Split(rawStack, "\n")
omitEnd := len(lines) - omitBottom
// If the start is after the end, the depth was invalid originally so return
// the entire raw stack
if omitTop > omitEnd {
return rawStack
}
lines = lines[omitTop:omitEnd]
lines = append([]string{top}, lines...)
return strings.Join(lines, "\n")
}
// unblocked is called by coroutine to indicate that since the last time yield was unblocked channel or select
// where unblocked versus calling yield again after checking their condition
func (s *coroutineState) unblocked() {
s.keptBlocked = false
}
func (s *coroutineState) call(timeout time.Duration) {
s.unblock <- func(status string, stackDepth int) bool {
return false // unblock
}
// Defaults are populated in the worker options during worker startup, but test environment
// may have no default value for the deadlock detection timeout, so we also need to set it here for
// backwards compatibility.
if timeout == 0 {
timeout = defaultDeadlockDetectionTimeout
if debugMode {
timeout = unlimitedDeadlockDetectionTimeout
}
}
deadlockTimer := time.NewTimer(timeout)
defer func() { deadlockTimer.Stop() }()
select {
case <-s.aboutToBlock:
case <-deadlockTimer.C:
s.closed.Store(true)
panic(fmt.Sprintf("Potential deadlock detected: "+
"workflow goroutine %q didn't yield for over a second", s.name))
}
}
func (s *coroutineState) close() {
s.closed.Store(true)
s.aboutToBlock <- true
}
func (s *coroutineState) exit() {
if !s.closed.Load() {
s.unblock <- func(status string, stackDepth int) bool {
runtime.Goexit()
return true
}
}
}
func (s *coroutineState) stackTrace() string {
if s.closed.Load() {
return ""
}
stackCh := make(chan string, 1)
s.unblock <- func(status string, stackDepth int) bool {
stackCh <- getStackTrace(s.name, status, stackDepth+2)
return true
}
return <-stackCh
}
func (d *dispatcherImpl) NewCoroutine(ctx Context, name string, f func(ctx Context)) Context {
if name == "" {
name = fmt.Sprintf("%v", d.sequence+1)
}
state := d.newState(name)
spawned := WithValue(ctx, coroutinesContextKey, state)
go func(crt *coroutineState) {
defer crt.close()
defer func() {
if r := recover(); r != nil {
st := getStackTrace(name, "panic", 4)
crt.panicError = newWorkflowPanicError(r, st)
}
}()
crt.initialYield(1, "")
f(spawned)
}(state)
return spawned
}
func (d *dispatcherImpl) newState(name string) *coroutineState {
c := &coroutineState{
name: name,
dispatcher: d,
aboutToBlock: make(chan bool, 1),
unblock: make(chan unblockFunc),
}
d.sequence++
d.coroutines = append(d.coroutines, c)
return c
}
func (d *dispatcherImpl) ExecuteUntilAllBlocked(deadlockDetectionTimeout time.Duration) (err error) {
d.mutex.Lock()
if d.closed {
panic("dispatcher is closed")
}
if d.executing {
panic("call to ExecuteUntilAllBlocked (possibly from a coroutine) while it is already running")
}
d.executing = true
d.mutex.Unlock()
defer func() {
d.mutex.Lock()
d.executing = false
d.mutex.Unlock()
}()
allBlocked := false
// Keep executing until at least one goroutine made some progress
for !allBlocked {
// Give every coroutine chance to execute removing closed ones
allBlocked = true
lastSequence := d.sequence
for i := 0; i < len(d.coroutines); i++ {
c := d.coroutines[i]
if !c.closed.Load() {
// TODO: Support handling of panic in a coroutine by dispatcher.
// TODO: Dump all outstanding coroutines if one of them panics
c.call(deadlockDetectionTimeout)
}
// c.call() can close the context so check again
if c.closed.Load() {
// remove the closed one from the slice
d.coroutines = append(d.coroutines[:i],
d.coroutines[i+1:]...)
i--
if c.panicError != nil {
return c.panicError
}
allBlocked = false
} else {
allBlocked = allBlocked && (c.keptBlocked || c.closed.Load())
}
}
// Set allBlocked to false if new coroutines where created
allBlocked = allBlocked && lastSequence == d.sequence
if len(d.coroutines) == 0 {
break
}
}
return nil
}
func (d *dispatcherImpl) IsDone() bool {
d.mutex.Lock()
defer d.mutex.Unlock()
return len(d.coroutines) == 0
}
func (d *dispatcherImpl) IsExecuting() bool {
d.mutex.Lock()
defer d.mutex.Unlock()
return d.executing
}
func (d *dispatcherImpl) Close() {
d.mutex.Lock()
if d.closed {
d.mutex.Unlock()
return
}
d.closed = true
d.mutex.Unlock()
for i := 0; i < len(d.coroutines); i++ {
c := d.coroutines[i]
if !c.closed.Load() {
c.exit()
}
}
}
func (d *dispatcherImpl) StackTrace() string {
var result string
for i := 0; i < len(d.coroutines); i++ {
c := d.coroutines[i]
if !c.closed.Load() {
if len(result) > 0 {
result += "\n\n"
}
result += c.stackTrace()
}
}
return result
}
func (s *selectorImpl) AddReceive(c ReceiveChannel, f func(c ReceiveChannel, more bool)) Selector {
s.cases = append(s.cases, &selectCase{channel: c.(*channelImpl), receiveFunc: &f})
return s
}
func (s *selectorImpl) AddSend(c SendChannel, v interface{}, f func()) Selector {
s.cases = append(s.cases, &selectCase{channel: c.(*channelImpl), sendFunc: &f, sendValue: &v})
return s
}
func (s *selectorImpl) AddFuture(future Future, f func(future Future)) Selector {
asyncF, ok := future.(asyncFuture)
if !ok {
panic("cannot chain Future that wasn't created with workflow.NewFuture")
}
s.cases = append(s.cases, &selectCase{future: asyncF, futureFunc: &f})
return s
}
func (s *selectorImpl) AddDefault(f func()) {
s.defaultFunc = &f
}
func (s *selectorImpl) HasPending() bool {
for _, pair := range s.cases {
if pair.receiveFunc != nil && pair.channel.CanReceiveWithoutBlocking() {
return true
} else if pair.sendFunc != nil && pair.channel.CanSendWithoutBlocking() {
return true
} else if pair.futureFunc != nil && pair.future.IsReady() {
return true
}
}
return false
}
func (s *selectorImpl) Select(ctx Context) {
state := getState(ctx)
var readyBranch func()
var cleanups []func()
defer func() {
for _, c := range cleanups {
c()
}
}()
for _, pair := range s.cases {
if pair.receiveFunc != nil {
f := *pair.receiveFunc
c := pair.channel
callback := &receiveCallback{
fn: func(v interface{}, more bool) bool {
if readyBranch != nil {
return false
}
readyBranch = func() {
c.recValue = &v
f(c, more)
}
return true
},
}
v, ok, more := c.receiveAsyncImpl(callback)
if ok || !more {
// Select() returns in this case/branch. The callback won't be called for this case. However, callback
// will be called for previous cases/branches. We should set readyBranch so that when other case/branch
// become ready they won't consume the value for this Select() call.
readyBranch = func() {
}
// Avoid assigning pointer to nil interface which makes
// c.RecValue != nil and breaks the nil check at the beginning of receiveAsyncImpl
if more {
c.recValue = &v
} else {
pair.receiveFunc = nil
}
f(c, more)
return
}
// callback closure is added to channel's blockedReceives, we need to clean it up to avoid closure leak
cleanups = append(cleanups, func() {
c.removeReceiveCallback(callback)
})
} else if pair.sendFunc != nil {
f := *pair.sendFunc
c := pair.channel
callback := &sendCallback{
value: *pair.sendValue,
fn: func() bool {
if readyBranch != nil {
return false
}
readyBranch = func() {
f()
}
return true
},
}
ok := c.sendAsyncImpl(*pair.sendValue, callback)
if ok {
// Select() returns in this case/branch. The callback won't be called for this case. However, callback
// will be called for previous cases/branches. We should set readyBranch so that when other case/branch
// become ready they won't consume the value for this Select() call.
readyBranch = func() {
}
f()
return
}
// callback closure is added to channel's blockedSends, we need to clean it up to avoid closure leak
cleanups = append(cleanups, func() {
c.removeSendCallback(callback)
})
} else if pair.futureFunc != nil {
p := pair
f := *p.futureFunc
callback := &receiveCallback{
fn: func(v interface{}, more bool) bool {
if readyBranch != nil {
return false
}
readyBranch = func() {
p.futureFunc = nil
f(p.future)
}
return true
},
}
_, ok, _ := p.future.GetAsync(callback)
if ok {
// Select() returns in this case/branch. The callback won't be called for this case. However, callback
// will be called for previous cases/branches. We should set readyBranch so that when other case/branch
// become ready they won't consume the value for this Select() call.
readyBranch = func() {
}
p.futureFunc = nil
f(p.future)
return
}
// callback closure is added to future's channel's blockedReceives, need to clean up to avoid leak
cleanups = append(cleanups, func() {
p.future.RemoveReceiveCallback(callback)
})
}
}
if s.defaultFunc != nil {
f := *s.defaultFunc
f()
return
}
for {
if readyBranch != nil {
readyBranch()
state.unblocked()
return
}
state.yield(fmt.Sprintf("blocked on %s.Select", s.name))
}
}
// NewWorkflowDefinition creates a WorkflowDefinition from a Workflow
func newSyncWorkflowDefinition(workflow workflow) *syncWorkflowDefinition {
return &syncWorkflowDefinition{workflow: workflow}
}
func getValidatedWorkflowFunction(workflowFunc interface{}, args []interface{}, dataConverter converter.DataConverter, r *registry) (*WorkflowType, *commonpb.Payloads, error) {
if err := validateFunctionArgs(workflowFunc, args, true); err != nil {
return nil, nil, err
}
fnName, err := getWorkflowFunctionName(r, workflowFunc)
if err != nil {
return nil, nil, err
}
if dataConverter == nil {
dataConverter = converter.GetDefaultDataConverter()
}
input, err := encodeArgs(dataConverter, args)
if err != nil {
return nil, nil, err
}
return &WorkflowType{Name: fnName}, input, nil
}
func getWorkflowEnvOptions(ctx Context) *WorkflowOptions {
options := ctx.Value(workflowEnvOptionsContextKey)
if options != nil {
return options.(*WorkflowOptions)
}
return nil
}
func setWorkflowEnvOptionsIfNotExist(ctx Context) Context {
options := getWorkflowEnvOptions(ctx)
var newOptions WorkflowOptions
if options != nil {
newOptions = *options
} else {
newOptions.signalChannels = make(map[string]Channel)
newOptions.queryHandlers = make(map[string]*queryHandler)
}
if newOptions.DataConverter == nil {
newOptions.DataConverter = converter.GetDefaultDataConverter()
}
return WithValue(ctx, workflowEnvOptionsContextKey, &newOptions)
}
func getDataConverterFromWorkflowContext(ctx Context) converter.DataConverter {
options := getWorkflowEnvOptions(ctx)
var dataConverter converter.DataConverter
if options != nil && options.DataConverter != nil {
dataConverter = options.DataConverter
} else {
dataConverter = converter.GetDefaultDataConverter()
}
return WithWorkflowContext(ctx, dataConverter)
}
func getRegistryFromWorkflowContext(ctx Context) *registry {
env := getWorkflowEnvironment(ctx)
return env.GetRegistry()
}
// getSignalChannel finds the associated channel for the signal.
func (w *WorkflowOptions) getSignalChannel(ctx Context, signalName string) ReceiveChannel {
if ch, ok := w.signalChannels[signalName]; ok {
return ch
}
ch := NewNamedBufferedChannel(ctx, signalName, defaultSignalChannelSize)
w.signalChannels[signalName] = ch
return ch
}
// getUnhandledSignals checks if there are any signal channels that have data to be consumed.
func (w *WorkflowOptions) getUnhandledSignals() []string {
var unhandledSignals []string
for k, c := range w.signalChannels {
ch := c.(*channelImpl)
v, ok, _ := ch.receiveAsyncImpl(nil)
if ok {
unhandledSignals = append(unhandledSignals, k)
ch.recValue = &v
}
}
return unhandledSignals
}
func (d *decodeFutureImpl) Get(ctx Context, valuePtr interface{}) error {
more := d.futureImpl.channel.Receive(ctx, nil)
if more {
panic("not closed")
}
if !d.futureImpl.ready {
panic("not ready")
}
if d.futureImpl.err != nil || d.futureImpl.value == nil || valuePtr == nil {
return d.futureImpl.err
}
rf := reflect.ValueOf(valuePtr)
if rf.Type().Kind() != reflect.Ptr {
return errors.New("valuePtr parameter is not a pointer")
}
dataConverter := getDataConverterFromWorkflowContext(ctx)
err := dataConverter.FromPayloads(d.futureImpl.value.(*commonpb.Payloads), valuePtr)
if err != nil {
return err
}
return d.futureImpl.err
}
// newDecodeFuture creates a new future as well as associated Settable that is used to set its value.
// fn - the decoded value needs to be validated against a function.
func newDecodeFuture(ctx Context, fn interface{}) (Future, Settable) {
impl := &decodeFutureImpl{
&futureImpl{channel: NewChannel(ctx).(*channelImpl)}, fn}
return impl, impl
}
// setQueryHandler sets query handler for given queryType.
func setQueryHandler(ctx Context, queryType string, handler interface{}) error {
qh := &queryHandler{fn: handler, queryType: queryType, dataConverter: getDataConverterFromWorkflowContext(ctx)}
err := qh.validateHandlerFn()
if err != nil {
return err
}
getWorkflowEnvOptions(ctx).queryHandlers[queryType] = qh
return nil
}
func (h *queryHandler) validateHandlerFn() error {
fnType := reflect.TypeOf(h.fn)
if fnType.Kind() != reflect.Func {
return fmt.Errorf("query handler must be function but was %s", fnType.Kind())
}
if fnType.NumOut() != 2 {
return fmt.Errorf(
"query handler must return 2 values (serializable result and error), but found %d return values", fnType.NumOut(),
)
}
if !isValidResultType(fnType.Out(0)) {
return fmt.Errorf(
"first return value of query handler must be serializable but found: %v", fnType.Out(0).Kind(),
)
}
if !isError(fnType.Out(1)) {
return fmt.Errorf(
"second return value of query handler must be error but found %v", fnType.Out(fnType.NumOut()-1).Kind(),
)
}
return nil
}
func (h *queryHandler) execute(input []interface{}) (result interface{}, err error) {
// if query handler panic, convert it to error
defer func() {
if p := recover(); p != nil {
result = nil
st := getStackTraceRaw("query handler [panic]:", 7, 0)
if p == panicIllegalAccessCoroutinueState {
// query handler code try to access workflow functions outside of workflow context, make error message
// more descriptive and clear.
p = "query handler must not use temporal context to do things like workflow.NewChannel(), " +
"workflow.Go() or to call any workflow blocking functions like Channel.Get() or Future.Get()"
}
err = fmt.Errorf("query handler panic: %v, stack trace: %v", p, st)
}
}()
return executeFunction(h.fn, input)
}
// Add adds delta, which may be negative, to the WaitGroup counter.
// If the counter becomes zero, all goroutines blocked on Wait are released.
// If the counter goes negative, Add panics.
//
// Note that calls with a positive delta that occur when the counter is zero
// must happen before a Wait. Calls with a negative delta, or calls with a
// positive delta that start when the counter is greater than zero, may happen
// at any time.
// Typically this means the calls to Add should execute before the statement
// creating the goroutine or other event to be waited for.
// If a WaitGroup is reused to wait for several independent sets of events,
// new Add calls must happen after all previous Wait calls have returned.
//
// param delta int -> the value to increment the WaitGroup counter by
func (wg *waitGroupImpl) Add(delta int) {
wg.n = wg.n + delta
if wg.n < 0 {
panic("negative WaitGroup counter")
}
if (wg.n > 0) || (!wg.waiting) {
return
}
if wg.n == 0 {
wg.settable.Set(false, nil)
}
}
// Done decrements the WaitGroup counter by 1, indicating
// that a coroutine in the WaitGroup has completed
func (wg *waitGroupImpl) Done() {
wg.Add(-1)
}
// Wait blocks and waits for specified number of couritines to
// finish executing and then unblocks once the counter has reached 0.
//
// param ctx Context -> workflow context
func (wg *waitGroupImpl) Wait(ctx Context) {
if wg.n <= 0 {
return
}
if wg.waiting {
panic("WaitGroup is reused before previous Wait has returned")
}
wg.waiting = true
if err := wg.future.Get(ctx, &wg.waiting); err != nil {
panic(err)
}
wg.future, wg.settable = NewFuture(ctx)
}