peridot/vendor/golang.org/x/crypto/ssh/keys.go
Mustafa Gezen ad0f7a5305
Major upgrades
Upgrade to Go 1.20.5, Hydra v2 SDK, rules-go v0.44.2 (with proper resolves), protobuf v25.3 and mass upgrade of Go dependencies.
2024-03-17 08:06:08 +01:00

1729 lines
45 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssh
import (
"bytes"
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/dsa"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/elliptic"
"crypto/md5"
"crypto/rand"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"encoding/asn1"
"encoding/base64"
"encoding/binary"
"encoding/hex"
"encoding/pem"
"errors"
"fmt"
"io"
"math/big"
"strings"
"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
)
// Public key algorithms names. These values can appear in PublicKey.Type,
// ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
// arguments.
const (
KeyAlgoRSA = "ssh-rsa"
KeyAlgoDSA = "ssh-dss"
KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"
KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"
KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"
KeyAlgoED25519 = "ssh-ed25519"
KeyAlgoSKED25519 = "sk-ssh-ed25519@openssh.com"
// KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
// public key formats, so they can't appear as a PublicKey.Type. The
// corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2.
KeyAlgoRSASHA256 = "rsa-sha2-256"
KeyAlgoRSASHA512 = "rsa-sha2-512"
)
const (
// Deprecated: use KeyAlgoRSA.
SigAlgoRSA = KeyAlgoRSA
// Deprecated: use KeyAlgoRSASHA256.
SigAlgoRSASHA2256 = KeyAlgoRSASHA256
// Deprecated: use KeyAlgoRSASHA512.
SigAlgoRSASHA2512 = KeyAlgoRSASHA512
)
// parsePubKey parses a public key of the given algorithm.
// Use ParsePublicKey for keys with prepended algorithm.
func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
switch algo {
case KeyAlgoRSA:
return parseRSA(in)
case KeyAlgoDSA:
return parseDSA(in)
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
return parseECDSA(in)
case KeyAlgoSKECDSA256:
return parseSKECDSA(in)
case KeyAlgoED25519:
return parseED25519(in)
case KeyAlgoSKED25519:
return parseSKEd25519(in)
case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
cert, err := parseCert(in, certKeyAlgoNames[algo])
if err != nil {
return nil, nil, err
}
return cert, nil, nil
}
return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
}
// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
// (see sshd(8) manual page) once the options and key type fields have been
// removed.
func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
in = bytes.TrimSpace(in)
i := bytes.IndexAny(in, " \t")
if i == -1 {
i = len(in)
}
base64Key := in[:i]
key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
n, err := base64.StdEncoding.Decode(key, base64Key)
if err != nil {
return nil, "", err
}
key = key[:n]
out, err = ParsePublicKey(key)
if err != nil {
return nil, "", err
}
comment = string(bytes.TrimSpace(in[i:]))
return out, comment, nil
}
// ParseKnownHosts parses an entry in the format of the known_hosts file.
//
// The known_hosts format is documented in the sshd(8) manual page. This
// function will parse a single entry from in. On successful return, marker
// will contain the optional marker value (i.e. "cert-authority" or "revoked")
// or else be empty, hosts will contain the hosts that this entry matches,
// pubKey will contain the public key and comment will contain any trailing
// comment at the end of the line. See the sshd(8) manual page for the various
// forms that a host string can take.
//
// The unparsed remainder of the input will be returned in rest. This function
// can be called repeatedly to parse multiple entries.
//
// If no entries were found in the input then err will be io.EOF. Otherwise a
// non-nil err value indicates a parse error.
func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
for len(in) > 0 {
end := bytes.IndexByte(in, '\n')
if end != -1 {
rest = in[end+1:]
in = in[:end]
} else {
rest = nil
}
end = bytes.IndexByte(in, '\r')
if end != -1 {
in = in[:end]
}
in = bytes.TrimSpace(in)
if len(in) == 0 || in[0] == '#' {
in = rest
continue
}
i := bytes.IndexAny(in, " \t")
if i == -1 {
in = rest
continue
}
// Strip out the beginning of the known_host key.
// This is either an optional marker or a (set of) hostname(s).
keyFields := bytes.Fields(in)
if len(keyFields) < 3 || len(keyFields) > 5 {
return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
}
// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
// list of hosts
marker := ""
if keyFields[0][0] == '@' {
marker = string(keyFields[0][1:])
keyFields = keyFields[1:]
}
hosts := string(keyFields[0])
// keyFields[1] contains the key type (e.g. “ssh-rsa”).
// However, that information is duplicated inside the
// base64-encoded key and so is ignored here.
key := bytes.Join(keyFields[2:], []byte(" "))
if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
return "", nil, nil, "", nil, err
}
return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
}
return "", nil, nil, "", nil, io.EOF
}
// ParseAuthorizedKey parses a public key from an authorized_keys
// file used in OpenSSH according to the sshd(8) manual page.
func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
for len(in) > 0 {
end := bytes.IndexByte(in, '\n')
if end != -1 {
rest = in[end+1:]
in = in[:end]
} else {
rest = nil
}
end = bytes.IndexByte(in, '\r')
if end != -1 {
in = in[:end]
}
in = bytes.TrimSpace(in)
if len(in) == 0 || in[0] == '#' {
in = rest
continue
}
i := bytes.IndexAny(in, " \t")
if i == -1 {
in = rest
continue
}
if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
return out, comment, options, rest, nil
}
// No key type recognised. Maybe there's an options field at
// the beginning.
var b byte
inQuote := false
var candidateOptions []string
optionStart := 0
for i, b = range in {
isEnd := !inQuote && (b == ' ' || b == '\t')
if (b == ',' && !inQuote) || isEnd {
if i-optionStart > 0 {
candidateOptions = append(candidateOptions, string(in[optionStart:i]))
}
optionStart = i + 1
}
if isEnd {
break
}
if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
inQuote = !inQuote
}
}
for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
i++
}
if i == len(in) {
// Invalid line: unmatched quote
in = rest
continue
}
in = in[i:]
i = bytes.IndexAny(in, " \t")
if i == -1 {
in = rest
continue
}
if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
options = candidateOptions
return out, comment, options, rest, nil
}
in = rest
continue
}
return nil, "", nil, nil, errors.New("ssh: no key found")
}
// ParsePublicKey parses an SSH public key formatted for use in
// the SSH wire protocol according to RFC 4253, section 6.6.
func ParsePublicKey(in []byte) (out PublicKey, err error) {
algo, in, ok := parseString(in)
if !ok {
return nil, errShortRead
}
var rest []byte
out, rest, err = parsePubKey(in, string(algo))
if len(rest) > 0 {
return nil, errors.New("ssh: trailing junk in public key")
}
return out, err
}
// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
// authorized_keys file. The return value ends with newline.
func MarshalAuthorizedKey(key PublicKey) []byte {
b := &bytes.Buffer{}
b.WriteString(key.Type())
b.WriteByte(' ')
e := base64.NewEncoder(base64.StdEncoding, b)
e.Write(key.Marshal())
e.Close()
b.WriteByte('\n')
return b.Bytes()
}
// MarshalPrivateKey returns a PEM block with the private key serialized in the
// OpenSSH format.
func MarshalPrivateKey(key crypto.PrivateKey, comment string) (*pem.Block, error) {
return marshalOpenSSHPrivateKey(key, comment, unencryptedOpenSSHMarshaler)
}
// MarshalPrivateKeyWithPassphrase returns a PEM block holding the encrypted
// private key serialized in the OpenSSH format.
func MarshalPrivateKeyWithPassphrase(key crypto.PrivateKey, comment string, passphrase []byte) (*pem.Block, error) {
return marshalOpenSSHPrivateKey(key, comment, passphraseProtectedOpenSSHMarshaler(passphrase))
}
// PublicKey represents a public key using an unspecified algorithm.
//
// Some PublicKeys provided by this package also implement CryptoPublicKey.
type PublicKey interface {
// Type returns the key format name, e.g. "ssh-rsa".
Type() string
// Marshal returns the serialized key data in SSH wire format, with the name
// prefix. To unmarshal the returned data, use the ParsePublicKey function.
Marshal() []byte
// Verify that sig is a signature on the given data using this key. This
// method will hash the data appropriately first. sig.Format is allowed to
// be any signature algorithm compatible with the key type, the caller
// should check if it has more stringent requirements.
Verify(data []byte, sig *Signature) error
}
// CryptoPublicKey, if implemented by a PublicKey,
// returns the underlying crypto.PublicKey form of the key.
type CryptoPublicKey interface {
CryptoPublicKey() crypto.PublicKey
}
// A Signer can create signatures that verify against a public key.
//
// Some Signers provided by this package also implement MultiAlgorithmSigner.
type Signer interface {
// PublicKey returns the associated PublicKey.
PublicKey() PublicKey
// Sign returns a signature for the given data. This method will hash the
// data appropriately first. The signature algorithm is expected to match
// the key format returned by the PublicKey.Type method (and not to be any
// alternative algorithm supported by the key format).
Sign(rand io.Reader, data []byte) (*Signature, error)
}
// An AlgorithmSigner is a Signer that also supports specifying an algorithm to
// use for signing.
//
// An AlgorithmSigner can't advertise the algorithms it supports, unless it also
// implements MultiAlgorithmSigner, so it should be prepared to be invoked with
// every algorithm supported by the public key format.
type AlgorithmSigner interface {
Signer
// SignWithAlgorithm is like Signer.Sign, but allows specifying a desired
// signing algorithm. Callers may pass an empty string for the algorithm in
// which case the AlgorithmSigner will use a default algorithm. This default
// doesn't currently control any behavior in this package.
SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
}
// MultiAlgorithmSigner is an AlgorithmSigner that also reports the algorithms
// supported by that signer.
type MultiAlgorithmSigner interface {
AlgorithmSigner
// Algorithms returns the available algorithms in preference order. The list
// must not be empty, and it must not include certificate types.
Algorithms() []string
}
// NewSignerWithAlgorithms returns a signer restricted to the specified
// algorithms. The algorithms must be set in preference order. The list must not
// be empty, and it must not include certificate types. An error is returned if
// the specified algorithms are incompatible with the public key type.
func NewSignerWithAlgorithms(signer AlgorithmSigner, algorithms []string) (MultiAlgorithmSigner, error) {
if len(algorithms) == 0 {
return nil, errors.New("ssh: please specify at least one valid signing algorithm")
}
var signerAlgos []string
supportedAlgos := algorithmsForKeyFormat(underlyingAlgo(signer.PublicKey().Type()))
if s, ok := signer.(*multiAlgorithmSigner); ok {
signerAlgos = s.Algorithms()
} else {
signerAlgos = supportedAlgos
}
for _, algo := range algorithms {
if !contains(supportedAlgos, algo) {
return nil, fmt.Errorf("ssh: algorithm %q is not supported for key type %q",
algo, signer.PublicKey().Type())
}
if !contains(signerAlgos, algo) {
return nil, fmt.Errorf("ssh: algorithm %q is restricted for the provided signer", algo)
}
}
return &multiAlgorithmSigner{
AlgorithmSigner: signer,
supportedAlgorithms: algorithms,
}, nil
}
type multiAlgorithmSigner struct {
AlgorithmSigner
supportedAlgorithms []string
}
func (s *multiAlgorithmSigner) Algorithms() []string {
return s.supportedAlgorithms
}
func (s *multiAlgorithmSigner) isAlgorithmSupported(algorithm string) bool {
if algorithm == "" {
algorithm = underlyingAlgo(s.PublicKey().Type())
}
for _, algo := range s.supportedAlgorithms {
if algorithm == algo {
return true
}
}
return false
}
func (s *multiAlgorithmSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
if !s.isAlgorithmSupported(algorithm) {
return nil, fmt.Errorf("ssh: algorithm %q is not supported: %v", algorithm, s.supportedAlgorithms)
}
return s.AlgorithmSigner.SignWithAlgorithm(rand, data, algorithm)
}
type rsaPublicKey rsa.PublicKey
func (r *rsaPublicKey) Type() string {
return "ssh-rsa"
}
// parseRSA parses an RSA key according to RFC 4253, section 6.6.
func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
var w struct {
E *big.Int
N *big.Int
Rest []byte `ssh:"rest"`
}
if err := Unmarshal(in, &w); err != nil {
return nil, nil, err
}
if w.E.BitLen() > 24 {
return nil, nil, errors.New("ssh: exponent too large")
}
e := w.E.Int64()
if e < 3 || e&1 == 0 {
return nil, nil, errors.New("ssh: incorrect exponent")
}
var key rsa.PublicKey
key.E = int(e)
key.N = w.N
return (*rsaPublicKey)(&key), w.Rest, nil
}
func (r *rsaPublicKey) Marshal() []byte {
e := new(big.Int).SetInt64(int64(r.E))
// RSA publickey struct layout should match the struct used by
// parseRSACert in the x/crypto/ssh/agent package.
wirekey := struct {
Name string
E *big.Int
N *big.Int
}{
KeyAlgoRSA,
e,
r.N,
}
return Marshal(&wirekey)
}
func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
supportedAlgos := algorithmsForKeyFormat(r.Type())
if !contains(supportedAlgos, sig.Format) {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
}
hash := hashFuncs[sig.Format]
h := hash.New()
h.Write(data)
digest := h.Sum(nil)
return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, sig.Blob)
}
func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
return (*rsa.PublicKey)(r)
}
type dsaPublicKey dsa.PublicKey
func (k *dsaPublicKey) Type() string {
return "ssh-dss"
}
func checkDSAParams(param *dsa.Parameters) error {
// SSH specifies FIPS 186-2, which only provided a single size
// (1024 bits) DSA key. FIPS 186-3 allows for larger key
// sizes, which would confuse SSH.
if l := param.P.BitLen(); l != 1024 {
return fmt.Errorf("ssh: unsupported DSA key size %d", l)
}
return nil
}
// parseDSA parses an DSA key according to RFC 4253, section 6.6.
func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
var w struct {
P, Q, G, Y *big.Int
Rest []byte `ssh:"rest"`
}
if err := Unmarshal(in, &w); err != nil {
return nil, nil, err
}
param := dsa.Parameters{
P: w.P,
Q: w.Q,
G: w.G,
}
if err := checkDSAParams(&param); err != nil {
return nil, nil, err
}
key := &dsaPublicKey{
Parameters: param,
Y: w.Y,
}
return key, w.Rest, nil
}
func (k *dsaPublicKey) Marshal() []byte {
// DSA publickey struct layout should match the struct used by
// parseDSACert in the x/crypto/ssh/agent package.
w := struct {
Name string
P, Q, G, Y *big.Int
}{
k.Type(),
k.P,
k.Q,
k.G,
k.Y,
}
return Marshal(&w)
}
func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
if sig.Format != k.Type() {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
}
h := hashFuncs[sig.Format].New()
h.Write(data)
digest := h.Sum(nil)
// Per RFC 4253, section 6.6,
// The value for 'dss_signature_blob' is encoded as a string containing
// r, followed by s (which are 160-bit integers, without lengths or
// padding, unsigned, and in network byte order).
// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
if len(sig.Blob) != 40 {
return errors.New("ssh: DSA signature parse error")
}
r := new(big.Int).SetBytes(sig.Blob[:20])
s := new(big.Int).SetBytes(sig.Blob[20:])
if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
return nil
}
return errors.New("ssh: signature did not verify")
}
func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
return (*dsa.PublicKey)(k)
}
type dsaPrivateKey struct {
*dsa.PrivateKey
}
func (k *dsaPrivateKey) PublicKey() PublicKey {
return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
}
func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
return k.SignWithAlgorithm(rand, data, k.PublicKey().Type())
}
func (k *dsaPrivateKey) Algorithms() []string {
return []string{k.PublicKey().Type()}
}
func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
if algorithm != "" && algorithm != k.PublicKey().Type() {
return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
}
h := hashFuncs[k.PublicKey().Type()].New()
h.Write(data)
digest := h.Sum(nil)
r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
if err != nil {
return nil, err
}
sig := make([]byte, 40)
rb := r.Bytes()
sb := s.Bytes()
copy(sig[20-len(rb):20], rb)
copy(sig[40-len(sb):], sb)
return &Signature{
Format: k.PublicKey().Type(),
Blob: sig,
}, nil
}
type ecdsaPublicKey ecdsa.PublicKey
func (k *ecdsaPublicKey) Type() string {
return "ecdsa-sha2-" + k.nistID()
}
func (k *ecdsaPublicKey) nistID() string {
switch k.Params().BitSize {
case 256:
return "nistp256"
case 384:
return "nistp384"
case 521:
return "nistp521"
}
panic("ssh: unsupported ecdsa key size")
}
type ed25519PublicKey ed25519.PublicKey
func (k ed25519PublicKey) Type() string {
return KeyAlgoED25519
}
func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
var w struct {
KeyBytes []byte
Rest []byte `ssh:"rest"`
}
if err := Unmarshal(in, &w); err != nil {
return nil, nil, err
}
if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
}
return ed25519PublicKey(w.KeyBytes), w.Rest, nil
}
func (k ed25519PublicKey) Marshal() []byte {
w := struct {
Name string
KeyBytes []byte
}{
KeyAlgoED25519,
[]byte(k),
}
return Marshal(&w)
}
func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
if sig.Format != k.Type() {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
}
if l := len(k); l != ed25519.PublicKeySize {
return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
}
if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
return errors.New("ssh: signature did not verify")
}
return nil
}
func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
return ed25519.PublicKey(k)
}
func supportedEllipticCurve(curve elliptic.Curve) bool {
return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
}
// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
var w struct {
Curve string
KeyBytes []byte
Rest []byte `ssh:"rest"`
}
if err := Unmarshal(in, &w); err != nil {
return nil, nil, err
}
key := new(ecdsa.PublicKey)
switch w.Curve {
case "nistp256":
key.Curve = elliptic.P256()
case "nistp384":
key.Curve = elliptic.P384()
case "nistp521":
key.Curve = elliptic.P521()
default:
return nil, nil, errors.New("ssh: unsupported curve")
}
key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
if key.X == nil || key.Y == nil {
return nil, nil, errors.New("ssh: invalid curve point")
}
return (*ecdsaPublicKey)(key), w.Rest, nil
}
func (k *ecdsaPublicKey) Marshal() []byte {
// See RFC 5656, section 3.1.
keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
// ECDSA publickey struct layout should match the struct used by
// parseECDSACert in the x/crypto/ssh/agent package.
w := struct {
Name string
ID string
Key []byte
}{
k.Type(),
k.nistID(),
keyBytes,
}
return Marshal(&w)
}
func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
if sig.Format != k.Type() {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
}
h := hashFuncs[sig.Format].New()
h.Write(data)
digest := h.Sum(nil)
// Per RFC 5656, section 3.1.2,
// The ecdsa_signature_blob value has the following specific encoding:
// mpint r
// mpint s
var ecSig struct {
R *big.Int
S *big.Int
}
if err := Unmarshal(sig.Blob, &ecSig); err != nil {
return err
}
if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
return nil
}
return errors.New("ssh: signature did not verify")
}
func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
return (*ecdsa.PublicKey)(k)
}
// skFields holds the additional fields present in U2F/FIDO2 signatures.
// See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
type skFields struct {
// Flags contains U2F/FIDO2 flags such as 'user present'
Flags byte
// Counter is a monotonic signature counter which can be
// used to detect concurrent use of a private key, should
// it be extracted from hardware.
Counter uint32
}
type skECDSAPublicKey struct {
// application is a URL-like string, typically "ssh:" for SSH.
// see openssh/PROTOCOL.u2f for details.
application string
ecdsa.PublicKey
}
func (k *skECDSAPublicKey) Type() string {
return KeyAlgoSKECDSA256
}
func (k *skECDSAPublicKey) nistID() string {
return "nistp256"
}
func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
var w struct {
Curve string
KeyBytes []byte
Application string
Rest []byte `ssh:"rest"`
}
if err := Unmarshal(in, &w); err != nil {
return nil, nil, err
}
key := new(skECDSAPublicKey)
key.application = w.Application
if w.Curve != "nistp256" {
return nil, nil, errors.New("ssh: unsupported curve")
}
key.Curve = elliptic.P256()
key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
if key.X == nil || key.Y == nil {
return nil, nil, errors.New("ssh: invalid curve point")
}
return key, w.Rest, nil
}
func (k *skECDSAPublicKey) Marshal() []byte {
// See RFC 5656, section 3.1.
keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
w := struct {
Name string
ID string
Key []byte
Application string
}{
k.Type(),
k.nistID(),
keyBytes,
k.application,
}
return Marshal(&w)
}
func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
if sig.Format != k.Type() {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
}
h := hashFuncs[sig.Format].New()
h.Write([]byte(k.application))
appDigest := h.Sum(nil)
h.Reset()
h.Write(data)
dataDigest := h.Sum(nil)
var ecSig struct {
R *big.Int
S *big.Int
}
if err := Unmarshal(sig.Blob, &ecSig); err != nil {
return err
}
var skf skFields
if err := Unmarshal(sig.Rest, &skf); err != nil {
return err
}
blob := struct {
ApplicationDigest []byte `ssh:"rest"`
Flags byte
Counter uint32
MessageDigest []byte `ssh:"rest"`
}{
appDigest,
skf.Flags,
skf.Counter,
dataDigest,
}
original := Marshal(blob)
h.Reset()
h.Write(original)
digest := h.Sum(nil)
if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
return nil
}
return errors.New("ssh: signature did not verify")
}
type skEd25519PublicKey struct {
// application is a URL-like string, typically "ssh:" for SSH.
// see openssh/PROTOCOL.u2f for details.
application string
ed25519.PublicKey
}
func (k *skEd25519PublicKey) Type() string {
return KeyAlgoSKED25519
}
func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
var w struct {
KeyBytes []byte
Application string
Rest []byte `ssh:"rest"`
}
if err := Unmarshal(in, &w); err != nil {
return nil, nil, err
}
if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
}
key := new(skEd25519PublicKey)
key.application = w.Application
key.PublicKey = ed25519.PublicKey(w.KeyBytes)
return key, w.Rest, nil
}
func (k *skEd25519PublicKey) Marshal() []byte {
w := struct {
Name string
KeyBytes []byte
Application string
}{
KeyAlgoSKED25519,
[]byte(k.PublicKey),
k.application,
}
return Marshal(&w)
}
func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
if sig.Format != k.Type() {
return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
}
if l := len(k.PublicKey); l != ed25519.PublicKeySize {
return fmt.Errorf("invalid size %d for Ed25519 public key", l)
}
h := hashFuncs[sig.Format].New()
h.Write([]byte(k.application))
appDigest := h.Sum(nil)
h.Reset()
h.Write(data)
dataDigest := h.Sum(nil)
var edSig struct {
Signature []byte `ssh:"rest"`
}
if err := Unmarshal(sig.Blob, &edSig); err != nil {
return err
}
var skf skFields
if err := Unmarshal(sig.Rest, &skf); err != nil {
return err
}
blob := struct {
ApplicationDigest []byte `ssh:"rest"`
Flags byte
Counter uint32
MessageDigest []byte `ssh:"rest"`
}{
appDigest,
skf.Flags,
skf.Counter,
dataDigest,
}
original := Marshal(blob)
if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
return errors.New("ssh: signature did not verify")
}
return nil
}
// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
// *ecdsa.PrivateKey or any other crypto.Signer and returns a
// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
// P-521. DSA keys must use parameter size L1024N160.
func NewSignerFromKey(key interface{}) (Signer, error) {
switch key := key.(type) {
case crypto.Signer:
return NewSignerFromSigner(key)
case *dsa.PrivateKey:
return newDSAPrivateKey(key)
default:
return nil, fmt.Errorf("ssh: unsupported key type %T", key)
}
}
func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
return nil, err
}
return &dsaPrivateKey{key}, nil
}
type wrappedSigner struct {
signer crypto.Signer
pubKey PublicKey
}
// NewSignerFromSigner takes any crypto.Signer implementation and
// returns a corresponding Signer interface. This can be used, for
// example, with keys kept in hardware modules.
func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
pubKey, err := NewPublicKey(signer.Public())
if err != nil {
return nil, err
}
return &wrappedSigner{signer, pubKey}, nil
}
func (s *wrappedSigner) PublicKey() PublicKey {
return s.pubKey
}
func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
return s.SignWithAlgorithm(rand, data, s.pubKey.Type())
}
func (s *wrappedSigner) Algorithms() []string {
return algorithmsForKeyFormat(s.pubKey.Type())
}
func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
if algorithm == "" {
algorithm = s.pubKey.Type()
}
if !contains(s.Algorithms(), algorithm) {
return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type())
}
hashFunc := hashFuncs[algorithm]
var digest []byte
if hashFunc != 0 {
h := hashFunc.New()
h.Write(data)
digest = h.Sum(nil)
} else {
digest = data
}
signature, err := s.signer.Sign(rand, digest, hashFunc)
if err != nil {
return nil, err
}
// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
// for ECDSA and DSA, but that's not the encoding expected by SSH, so
// re-encode.
switch s.pubKey.(type) {
case *ecdsaPublicKey, *dsaPublicKey:
type asn1Signature struct {
R, S *big.Int
}
asn1Sig := new(asn1Signature)
_, err := asn1.Unmarshal(signature, asn1Sig)
if err != nil {
return nil, err
}
switch s.pubKey.(type) {
case *ecdsaPublicKey:
signature = Marshal(asn1Sig)
case *dsaPublicKey:
signature = make([]byte, 40)
r := asn1Sig.R.Bytes()
s := asn1Sig.S.Bytes()
copy(signature[20-len(r):20], r)
copy(signature[40-len(s):40], s)
}
}
return &Signature{
Format: algorithm,
Blob: signature,
}, nil
}
// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
// or ed25519.PublicKey returns a corresponding PublicKey instance.
// ECDSA keys must use P-256, P-384 or P-521.
func NewPublicKey(key interface{}) (PublicKey, error) {
switch key := key.(type) {
case *rsa.PublicKey:
return (*rsaPublicKey)(key), nil
case *ecdsa.PublicKey:
if !supportedEllipticCurve(key.Curve) {
return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
}
return (*ecdsaPublicKey)(key), nil
case *dsa.PublicKey:
return (*dsaPublicKey)(key), nil
case ed25519.PublicKey:
if l := len(key); l != ed25519.PublicKeySize {
return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
}
return ed25519PublicKey(key), nil
default:
return nil, fmt.Errorf("ssh: unsupported key type %T", key)
}
}
// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
// the same keys as ParseRawPrivateKey. If the private key is encrypted, it
// will return a PassphraseMissingError.
func ParsePrivateKey(pemBytes []byte) (Signer, error) {
key, err := ParseRawPrivateKey(pemBytes)
if err != nil {
return nil, err
}
return NewSignerFromKey(key)
}
// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
// key and passphrase. It supports the same keys as
// ParseRawPrivateKeyWithPassphrase.
func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
if err != nil {
return nil, err
}
return NewSignerFromKey(key)
}
// encryptedBlock tells whether a private key is
// encrypted by examining its Proc-Type header
// for a mention of ENCRYPTED
// according to RFC 1421 Section 4.6.1.1.
func encryptedBlock(block *pem.Block) bool {
return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
}
// A PassphraseMissingError indicates that parsing this private key requires a
// passphrase. Use ParsePrivateKeyWithPassphrase.
type PassphraseMissingError struct {
// PublicKey will be set if the private key format includes an unencrypted
// public key along with the encrypted private key.
PublicKey PublicKey
}
func (*PassphraseMissingError) Error() string {
return "ssh: this private key is passphrase protected"
}
// ParseRawPrivateKey returns a private key from a PEM encoded private key. It supports
// RSA, DSA, ECDSA, and Ed25519 private keys in PKCS#1, PKCS#8, OpenSSL, and OpenSSH
// formats. If the private key is encrypted, it will return a PassphraseMissingError.
func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
block, _ := pem.Decode(pemBytes)
if block == nil {
return nil, errors.New("ssh: no key found")
}
if encryptedBlock(block) {
return nil, &PassphraseMissingError{}
}
switch block.Type {
case "RSA PRIVATE KEY":
return x509.ParsePKCS1PrivateKey(block.Bytes)
// RFC5208 - https://tools.ietf.org/html/rfc5208
case "PRIVATE KEY":
return x509.ParsePKCS8PrivateKey(block.Bytes)
case "EC PRIVATE KEY":
return x509.ParseECPrivateKey(block.Bytes)
case "DSA PRIVATE KEY":
return ParseDSAPrivateKey(block.Bytes)
case "OPENSSH PRIVATE KEY":
return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
default:
return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
}
}
// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
// passphrase from a PEM encoded private key. If the passphrase is wrong, it
// will return x509.IncorrectPasswordError.
func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
block, _ := pem.Decode(pemBytes)
if block == nil {
return nil, errors.New("ssh: no key found")
}
if block.Type == "OPENSSH PRIVATE KEY" {
return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
}
if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
return nil, errors.New("ssh: not an encrypted key")
}
buf, err := x509.DecryptPEMBlock(block, passphrase)
if err != nil {
if err == x509.IncorrectPasswordError {
return nil, err
}
return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
}
var result interface{}
switch block.Type {
case "RSA PRIVATE KEY":
result, err = x509.ParsePKCS1PrivateKey(buf)
case "EC PRIVATE KEY":
result, err = x509.ParseECPrivateKey(buf)
case "DSA PRIVATE KEY":
result, err = ParseDSAPrivateKey(buf)
default:
err = fmt.Errorf("ssh: unsupported key type %q", block.Type)
}
// Because of deficiencies in the format, DecryptPEMBlock does not always
// detect an incorrect password. In these cases decrypted DER bytes is
// random noise. If the parsing of the key returns an asn1.StructuralError
// we return x509.IncorrectPasswordError.
if _, ok := err.(asn1.StructuralError); ok {
return nil, x509.IncorrectPasswordError
}
return result, err
}
// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
// specified by the OpenSSL DSA man page.
func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
var k struct {
Version int
P *big.Int
Q *big.Int
G *big.Int
Pub *big.Int
Priv *big.Int
}
rest, err := asn1.Unmarshal(der, &k)
if err != nil {
return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
}
if len(rest) > 0 {
return nil, errors.New("ssh: garbage after DSA key")
}
return &dsa.PrivateKey{
PublicKey: dsa.PublicKey{
Parameters: dsa.Parameters{
P: k.P,
Q: k.Q,
G: k.G,
},
Y: k.Pub,
},
X: k.Priv,
}, nil
}
func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
if kdfName != "none" || cipherName != "none" {
return nil, &PassphraseMissingError{}
}
if kdfOpts != "" {
return nil, errors.New("ssh: invalid openssh private key")
}
return privKeyBlock, nil
}
func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
if kdfName == "none" || cipherName == "none" {
return nil, errors.New("ssh: key is not password protected")
}
if kdfName != "bcrypt" {
return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
}
var opts struct {
Salt string
Rounds uint32
}
if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
return nil, err
}
k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
if err != nil {
return nil, err
}
key, iv := k[:32], k[32:]
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
switch cipherName {
case "aes256-ctr":
ctr := cipher.NewCTR(c, iv)
ctr.XORKeyStream(privKeyBlock, privKeyBlock)
case "aes256-cbc":
if len(privKeyBlock)%c.BlockSize() != 0 {
return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
}
cbc := cipher.NewCBCDecrypter(c, iv)
cbc.CryptBlocks(privKeyBlock, privKeyBlock)
default:
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
}
return privKeyBlock, nil
}
}
func unencryptedOpenSSHMarshaler(privKeyBlock []byte) ([]byte, string, string, string, error) {
key := generateOpenSSHPadding(privKeyBlock, 8)
return key, "none", "none", "", nil
}
func passphraseProtectedOpenSSHMarshaler(passphrase []byte) openSSHEncryptFunc {
return func(privKeyBlock []byte) ([]byte, string, string, string, error) {
salt := make([]byte, 16)
if _, err := rand.Read(salt); err != nil {
return nil, "", "", "", err
}
opts := struct {
Salt []byte
Rounds uint32
}{salt, 16}
// Derive key to encrypt the private key block.
k, err := bcrypt_pbkdf.Key(passphrase, salt, int(opts.Rounds), 32+aes.BlockSize)
if err != nil {
return nil, "", "", "", err
}
// Add padding matching the block size of AES.
keyBlock := generateOpenSSHPadding(privKeyBlock, aes.BlockSize)
// Encrypt the private key using the derived secret.
dst := make([]byte, len(keyBlock))
key, iv := k[:32], k[32:]
block, err := aes.NewCipher(key)
if err != nil {
return nil, "", "", "", err
}
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(dst, keyBlock)
return dst, "aes256-ctr", "bcrypt", string(Marshal(opts)), nil
}
}
const privateKeyAuthMagic = "openssh-key-v1\x00"
type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
type openSSHEncryptFunc func(PrivKeyBlock []byte) (ProtectedKeyBlock []byte, cipherName, kdfName, kdfOptions string, err error)
type openSSHEncryptedPrivateKey struct {
CipherName string
KdfName string
KdfOpts string
NumKeys uint32
PubKey []byte
PrivKeyBlock []byte
}
type openSSHPrivateKey struct {
Check1 uint32
Check2 uint32
Keytype string
Rest []byte `ssh:"rest"`
}
type openSSHRSAPrivateKey struct {
N *big.Int
E *big.Int
D *big.Int
Iqmp *big.Int
P *big.Int
Q *big.Int
Comment string
Pad []byte `ssh:"rest"`
}
type openSSHEd25519PrivateKey struct {
Pub []byte
Priv []byte
Comment string
Pad []byte `ssh:"rest"`
}
type openSSHECDSAPrivateKey struct {
Curve string
Pub []byte
D *big.Int
Comment string
Pad []byte `ssh:"rest"`
}
// parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
// function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
// as the decrypt function to parse an unencrypted private key. See
// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
if len(key) < len(privateKeyAuthMagic) || string(key[:len(privateKeyAuthMagic)]) != privateKeyAuthMagic {
return nil, errors.New("ssh: invalid openssh private key format")
}
remaining := key[len(privateKeyAuthMagic):]
var w openSSHEncryptedPrivateKey
if err := Unmarshal(remaining, &w); err != nil {
return nil, err
}
if w.NumKeys != 1 {
// We only support single key files, and so does OpenSSH.
// https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
return nil, errors.New("ssh: multi-key files are not supported")
}
privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
if err != nil {
if err, ok := err.(*PassphraseMissingError); ok {
pub, errPub := ParsePublicKey(w.PubKey)
if errPub != nil {
return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
}
err.PublicKey = pub
}
return nil, err
}
var pk1 openSSHPrivateKey
if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
if w.CipherName != "none" {
return nil, x509.IncorrectPasswordError
}
return nil, errors.New("ssh: malformed OpenSSH key")
}
switch pk1.Keytype {
case KeyAlgoRSA:
var key openSSHRSAPrivateKey
if err := Unmarshal(pk1.Rest, &key); err != nil {
return nil, err
}
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
return nil, err
}
pk := &rsa.PrivateKey{
PublicKey: rsa.PublicKey{
N: key.N,
E: int(key.E.Int64()),
},
D: key.D,
Primes: []*big.Int{key.P, key.Q},
}
if err := pk.Validate(); err != nil {
return nil, err
}
pk.Precompute()
return pk, nil
case KeyAlgoED25519:
var key openSSHEd25519PrivateKey
if err := Unmarshal(pk1.Rest, &key); err != nil {
return nil, err
}
if len(key.Priv) != ed25519.PrivateKeySize {
return nil, errors.New("ssh: private key unexpected length")
}
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
return nil, err
}
pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
copy(pk, key.Priv)
return &pk, nil
case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
var key openSSHECDSAPrivateKey
if err := Unmarshal(pk1.Rest, &key); err != nil {
return nil, err
}
if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
return nil, err
}
var curve elliptic.Curve
switch key.Curve {
case "nistp256":
curve = elliptic.P256()
case "nistp384":
curve = elliptic.P384()
case "nistp521":
curve = elliptic.P521()
default:
return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
}
X, Y := elliptic.Unmarshal(curve, key.Pub)
if X == nil || Y == nil {
return nil, errors.New("ssh: failed to unmarshal public key")
}
if key.D.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("ssh: scalar is out of range")
}
x, y := curve.ScalarBaseMult(key.D.Bytes())
if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
return nil, errors.New("ssh: public key does not match private key")
}
return &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: curve,
X: X,
Y: Y,
},
D: key.D,
}, nil
default:
return nil, errors.New("ssh: unhandled key type")
}
}
func marshalOpenSSHPrivateKey(key crypto.PrivateKey, comment string, encrypt openSSHEncryptFunc) (*pem.Block, error) {
var w openSSHEncryptedPrivateKey
var pk1 openSSHPrivateKey
// Random check bytes.
var check uint32
if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil {
return nil, err
}
pk1.Check1 = check
pk1.Check2 = check
w.NumKeys = 1
// Use a []byte directly on ed25519 keys.
if k, ok := key.(*ed25519.PrivateKey); ok {
key = *k
}
switch k := key.(type) {
case *rsa.PrivateKey:
E := new(big.Int).SetInt64(int64(k.PublicKey.E))
// Marshal public key:
// E and N are in reversed order in the public and private key.
pubKey := struct {
KeyType string
E *big.Int
N *big.Int
}{
KeyAlgoRSA,
E, k.PublicKey.N,
}
w.PubKey = Marshal(pubKey)
// Marshal private key.
key := openSSHRSAPrivateKey{
N: k.PublicKey.N,
E: E,
D: k.D,
Iqmp: k.Precomputed.Qinv,
P: k.Primes[0],
Q: k.Primes[1],
Comment: comment,
}
pk1.Keytype = KeyAlgoRSA
pk1.Rest = Marshal(key)
case ed25519.PrivateKey:
pub := make([]byte, ed25519.PublicKeySize)
priv := make([]byte, ed25519.PrivateKeySize)
copy(pub, k[32:])
copy(priv, k)
// Marshal public key.
pubKey := struct {
KeyType string
Pub []byte
}{
KeyAlgoED25519, pub,
}
w.PubKey = Marshal(pubKey)
// Marshal private key.
key := openSSHEd25519PrivateKey{
Pub: pub,
Priv: priv,
Comment: comment,
}
pk1.Keytype = KeyAlgoED25519
pk1.Rest = Marshal(key)
case *ecdsa.PrivateKey:
var curve, keyType string
switch name := k.Curve.Params().Name; name {
case "P-256":
curve = "nistp256"
keyType = KeyAlgoECDSA256
case "P-384":
curve = "nistp384"
keyType = KeyAlgoECDSA384
case "P-521":
curve = "nistp521"
keyType = KeyAlgoECDSA521
default:
return nil, errors.New("ssh: unhandled elliptic curve " + name)
}
pub := elliptic.Marshal(k.Curve, k.PublicKey.X, k.PublicKey.Y)
// Marshal public key.
pubKey := struct {
KeyType string
Curve string
Pub []byte
}{
keyType, curve, pub,
}
w.PubKey = Marshal(pubKey)
// Marshal private key.
key := openSSHECDSAPrivateKey{
Curve: curve,
Pub: pub,
D: k.D,
Comment: comment,
}
pk1.Keytype = keyType
pk1.Rest = Marshal(key)
default:
return nil, fmt.Errorf("ssh: unsupported key type %T", k)
}
var err error
// Add padding and encrypt the key if necessary.
w.PrivKeyBlock, w.CipherName, w.KdfName, w.KdfOpts, err = encrypt(Marshal(pk1))
if err != nil {
return nil, err
}
b := Marshal(w)
block := &pem.Block{
Type: "OPENSSH PRIVATE KEY",
Bytes: append([]byte(privateKeyAuthMagic), b...),
}
return block, nil
}
func checkOpenSSHKeyPadding(pad []byte) error {
for i, b := range pad {
if int(b) != i+1 {
return errors.New("ssh: padding not as expected")
}
}
return nil
}
func generateOpenSSHPadding(block []byte, blockSize int) []byte {
for i, l := 0, len(block); (l+i)%blockSize != 0; i++ {
block = append(block, byte(i+1))
}
return block
}
// FingerprintLegacyMD5 returns the user presentation of the key's
// fingerprint as described by RFC 4716 section 4.
func FingerprintLegacyMD5(pubKey PublicKey) string {
md5sum := md5.Sum(pubKey.Marshal())
hexarray := make([]string, len(md5sum))
for i, c := range md5sum {
hexarray[i] = hex.EncodeToString([]byte{c})
}
return strings.Join(hexarray, ":")
}
// FingerprintSHA256 returns the user presentation of the key's
// fingerprint as unpadded base64 encoded sha256 hash.
// This format was introduced from OpenSSH 6.8.
// https://www.openssh.com/txt/release-6.8
// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
func FingerprintSHA256(pubKey PublicKey) string {
sha256sum := sha256.Sum256(pubKey.Marshal())
hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
return "SHA256:" + hash
}